Abstract

We demonstrate that appropriately designed external cavities can be used to frequency narrow high-power diode-array bars. Using a commercial 20-W array, we narrow the linewidth to 50 GHz with 14 W of cw output power. A magnifying telescope and a cylindrical collimating lens minimize broadening owing to curvature in the alignment of the diode-array elements.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).
    [CrossRef]
  2. E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
    [CrossRef]
  3. T. Eriksen, U. Hoppe, E. Thrane, and T. Blix, Appl. Opt. 38, 2605 (1999).
    [CrossRef]
  4. C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
    [CrossRef]
  5. I. Nelson, B. Chann, and T. Walker, Appl. Phys. Lett. 76, 1356 (2000).
    [CrossRef]
  6. D. Botez and D. Scifres, eds., Diode Laser Arrays (Cambridge U. Press, Cambridges, 1994).
    [CrossRef]
  7. Industrial Microphotonics Company Model ARR26C020. Emitter size, 80 µm; 200‐µm pitch.
  8. M. Littman and H. Metcalf, Appl. Opt. 17, 2224 (1978).
    [CrossRef] [PubMed]
  9. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, Opt. Lett. 25, 405 (2000).
    [CrossRef]
  10. A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
    [CrossRef]

2000 (2)

1999 (1)

1998 (1)

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

1997 (1)

T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).
[CrossRef]

1994 (1)

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

1991 (1)

C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

1978 (1)

Appelt, S.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

Ben-Amar Baranga, A.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

Blix, T.

Brown, E. R.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

Cates, G. D.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

Chann, B.

I. Nelson, B. Chann, and T. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

Choi, H. K.

Cook, C. C.

Daneu, V.

Dennis, C. L.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

Erickson, C. J.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

Eriksen, T.

Fan, T. Y.

Happer, W.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).
[CrossRef]

Hollberg, L.

C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Hoppe, U.

Littman, M.

Manfra, M. J.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

Mattia, J. P.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

Metcalf, H.

Nelson, I.

I. Nelson, B. Chann, and T. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

Romalis, M. V.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

Sanchez, A.

Smith, F. W.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

Thrane, E.

Turner, G. W.

Walker, T.

I. Nelson, B. Chann, and T. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

Walker, T. G.

T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).
[CrossRef]

Wieman, C.

C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Young, A. R.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Appl. Phys. Lett. 64, 3311 (1994).
[CrossRef]

I. Nelson, B. Chann, and T. Walker, Appl. Phys. Lett. 76, 1356 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett. 80, 2801 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Other (2)

D. Botez and D. Scifres, eds., Diode Laser Arrays (Cambridge U. Press, Cambridges, 1994).
[CrossRef]

Industrial Microphotonics Company Model ARR26C020. Emitter size, 80 µm; 200‐µm pitch.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the external-cavity diode-laser array, with selected rays.

Fig. 2
Fig. 2

Measured power spectra for the narrowed and unnarrowed (free-running) diode array.

Fig. 3
Fig. 3

Tuning range and power output of the narrowed portion of the external-cavity laser spectrum.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ=2d sinθ-ϕcos α,
δλ/λ0-α2/2-ϕ cot θ,
δλλ=x cot θMfc.

Metrics