Abstract

New polymeric matrices are presented that embed organic colloidal crystalline arrays (CCA’s) into mechanically stable photonic bandgap structures. We achieved these new matrices either by dispersing polystyrene CCA’s with high molecular weight hydrophilic polymer [poly(ethylene glycol); (PEG)] or through in situ polymerization of hydrophilic monomers (acrylamide and acrylate functional PEG variants) about the CCA. CCA-dispersed PEG matrices exhibited strong red opalescence with a narrow peak at 614 nm and were sufficiently rigid to withstand repeated mechanical deformation. Visible photonic bandgaps also were observed from free-standing CCA composites with cross-linked polyN,Ndimethylacrylamide matrices. The results demonstrate the technological potential for robust organic photonic crystals.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  2. J. Ballato, J. Opt. Soc. Am. B 17, 219 (2000).
    [CrossRef]
  3. S. Asher, J. Holtz, L. Liu, and Z. Wu, J. Am. Chem. Soc. 116, 4997 (1994).
    [CrossRef]
  4. J. Weissman, H. Sunkara, A. Tse, and S. Asher, Science 274, 959 (1996).
    [CrossRef] [PubMed]
  5. G. Pan, A. Tse, R. Kesavamoorthy, and S. Asher, J. Am. Chem. Soc. 120, 6518 (1998).
    [CrossRef]
  6. M. Woods, J. Dodge, and I. Krieger, J. Paint Technol. 42, 541 (1970).
  7. R. Spry and D. Kosan, Appl. Spectrosc. 40, 782 (1986).
    [CrossRef]
  8. Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
    [CrossRef]

2000

J. Ballato, J. Opt. Soc. Am. B 17, 219 (2000).
[CrossRef]

Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
[CrossRef]

1998

G. Pan, A. Tse, R. Kesavamoorthy, and S. Asher, J. Am. Chem. Soc. 120, 6518 (1998).
[CrossRef]

1996

J. Weissman, H. Sunkara, A. Tse, and S. Asher, Science 274, 959 (1996).
[CrossRef] [PubMed]

1994

S. Asher, J. Holtz, L. Liu, and Z. Wu, J. Am. Chem. Soc. 116, 4997 (1994).
[CrossRef]

1987

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

1986

1970

M. Woods, J. Dodge, and I. Krieger, J. Paint Technol. 42, 541 (1970).

Asher, S.

G. Pan, A. Tse, R. Kesavamoorthy, and S. Asher, J. Am. Chem. Soc. 120, 6518 (1998).
[CrossRef]

J. Weissman, H. Sunkara, A. Tse, and S. Asher, Science 274, 959 (1996).
[CrossRef] [PubMed]

S. Asher, J. Holtz, L. Liu, and Z. Wu, J. Am. Chem. Soc. 116, 4997 (1994).
[CrossRef]

Astratov, V.

Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
[CrossRef]

Ballato, J.

Baryshev, A.

Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
[CrossRef]

Dodge, J.

M. Woods, J. Dodge, and I. Krieger, J. Paint Technol. 42, 541 (1970).

Holtz, J.

S. Asher, J. Holtz, L. Liu, and Z. Wu, J. Am. Chem. Soc. 116, 4997 (1994).
[CrossRef]

Kaplyanskii, A.

Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
[CrossRef]

Karimov, O.

Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
[CrossRef]

Kesavamoorthy, R.

G. Pan, A. Tse, R. Kesavamoorthy, and S. Asher, J. Am. Chem. Soc. 120, 6518 (1998).
[CrossRef]

Kosan, D.

Krieger, I.

M. Woods, J. Dodge, and I. Krieger, J. Paint Technol. 42, 541 (1970).

Limonov, M.

Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
[CrossRef]

Liu, L.

S. Asher, J. Holtz, L. Liu, and Z. Wu, J. Am. Chem. Soc. 116, 4997 (1994).
[CrossRef]

Pan, G.

G. Pan, A. Tse, R. Kesavamoorthy, and S. Asher, J. Am. Chem. Soc. 120, 6518 (1998).
[CrossRef]

Spry, R.

Sunkara, H.

J. Weissman, H. Sunkara, A. Tse, and S. Asher, Science 274, 959 (1996).
[CrossRef] [PubMed]

Tse, A.

G. Pan, A. Tse, R. Kesavamoorthy, and S. Asher, J. Am. Chem. Soc. 120, 6518 (1998).
[CrossRef]

J. Weissman, H. Sunkara, A. Tse, and S. Asher, Science 274, 959 (1996).
[CrossRef] [PubMed]

Vlasov, Y.

Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
[CrossRef]

Weissman, J.

J. Weissman, H. Sunkara, A. Tse, and S. Asher, Science 274, 959 (1996).
[CrossRef] [PubMed]

Woods, M.

M. Woods, J. Dodge, and I. Krieger, J. Paint Technol. 42, 541 (1970).

Wu, Z.

S. Asher, J. Holtz, L. Liu, and Z. Wu, J. Am. Chem. Soc. 116, 4997 (1994).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Appl. Spectrosc.

J. Am. Chem. Soc.

G. Pan, A. Tse, R. Kesavamoorthy, and S. Asher, J. Am. Chem. Soc. 120, 6518 (1998).
[CrossRef]

S. Asher, J. Holtz, L. Liu, and Z. Wu, J. Am. Chem. Soc. 116, 4997 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Paint Technol.

M. Woods, J. Dodge, and I. Krieger, J. Paint Technol. 42, 541 (1970).

Phys. Rev. E

Y. Vlasov, V. Astratov, A. Baryshev, A. Kaplyanskii, O. Karimov, and M. Limonov, Phys. Rev. E 61, 5784 (2000).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Science

J. Weissman, H. Sunkara, A. Tse, and S. Asher, Science 274, 959 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top, process schematic for robust matrix formation. Precursors are added to aqueous CCA (denoted CCA-N, where N is 1, 2, or 3, depending on the precursor). Photoinitiated polymerized composites are denoted PCCA-N. Bottom, structures of precursors 1–3 and cross linker 4.

Fig. 2
Fig. 2

Red opalescence from CCA-1 that comprises 159-nm-diameter monodispersed polystyrene spheres at a particle density of approximately 4.7×1013 cm-3 blended with 40 wt. % PEG.

Fig. 3
Fig. 3

Reflectance spectra, at Bragg angles of 80° and 67.5°, of CCA-3 (solid curves) that comprise 159-nm-diameter monodisperse polystyrene spheres at a particle density of approximately 6.3×1013 cm-3 and PCCA-3 (dotted curves) following encapsulation with N,N-dimethylacrylamide. The corresponding disordered structures are presented at an angle of 80°; the lower angle is omitted because of a lack of angle dependence for these structures.

Tables (1)

Tables Icon

Table 1 Maximum Reflectance Peak Angles and Wavelengths with Corresponding Estimated Lattice Spacings D for Organic Photonic Crystals

Metrics