Abstract

A novel design for an extended-cavity diode laser is presented. The cavity contains an electro-optic prism for synchronous tuning of the cavity length and the grating’s incident angle. A simple analysis of the cavity is presented. Experimental results are reported that show mode-hop-free tuning over more than 10 GHz with high linearity and reproducibility. To the authors’ knowledge, this is the first demonstration of mode-hop-free tuning of an extended cavity over several free spectral intervals with an electro-optic crystal.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Harris, Y. Sun, W. R. Babbitt, R. L. Cone, J. A. Ritcey, and R. W. Equall, Opt. Lett. 25, 85 (2000).
    [CrossRef]
  2. K. D. Merkell and W. R. Babbitt, Opt. Lett. 24, 172 (1999).
    [CrossRef]
  3. L. Ménager, I. Lorgeré, J.-L. Le Gouët, R. K. Mohan, and S. Kröll, Opt. Lett. 24, 927 (1999).
    [CrossRef]
  4. M. Laschek, D. Wandt, A. Tünnermann, and H. Welling, Opt. Commun. 183, 59 (1998).
    [CrossRef]
  5. B. Boggs, C. Greiner, T. Wang, H. Lin, and T. W. Mossberg, Opt. Lett. 23, 1906 (1998).
    [CrossRef]
  6. According to the Schalow–Townes–Henry formula [C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982)] the linewidth grows as the inverse square of the cavity length.
    [CrossRef]
  7. S. Filimonov and J. Borysow, Appl. Opt. 34, 438 (1995).
    [CrossRef] [PubMed]
  8. The extraordinary index of the LiNbO3 crystal is taken as n=2.18; its electro-optic coefficient, as r33=31 pm/V.

2000 (1)

1999 (2)

1998 (2)

M. Laschek, D. Wandt, A. Tünnermann, and H. Welling, Opt. Commun. 183, 59 (1998).
[CrossRef]

B. Boggs, C. Greiner, T. Wang, H. Lin, and T. W. Mossberg, Opt. Lett. 23, 1906 (1998).
[CrossRef]

1995 (1)

1982 (1)

According to the Schalow–Townes–Henry formula [C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982)] the linewidth grows as the inverse square of the cavity length.
[CrossRef]

Babbitt, W. R.

Boggs, B.

Borysow, J.

Cone, R. L.

Equall, R. W.

Filimonov, S.

Greiner, C.

Harris, T. L.

Henry, C. H.

According to the Schalow–Townes–Henry formula [C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982)] the linewidth grows as the inverse square of the cavity length.
[CrossRef]

Kröll, S.

Laschek, M.

M. Laschek, D. Wandt, A. Tünnermann, and H. Welling, Opt. Commun. 183, 59 (1998).
[CrossRef]

Le Gouët, J.-L.

Lin, H.

Lorgeré, I.

Ménager, L.

Merkell, K. D.

Mohan, R. K.

Mossberg, T. W.

Ritcey, J. A.

Sun, Y.

Tünnermann, A.

M. Laschek, D. Wandt, A. Tünnermann, and H. Welling, Opt. Commun. 183, 59 (1998).
[CrossRef]

Wandt, D.

M. Laschek, D. Wandt, A. Tünnermann, and H. Welling, Opt. Commun. 183, 59 (1998).
[CrossRef]

Wang, T.

Welling, H.

M. Laschek, D. Wandt, A. Tünnermann, and H. Welling, Opt. Commun. 183, 59 (1998).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

According to the Schalow–Townes–Henry formula [C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982)] the linewidth grows as the inverse square of the cavity length.
[CrossRef]

Opt. Commun. (1)

M. Laschek, D. Wandt, A. Tünnermann, and H. Welling, Opt. Commun. 183, 59 (1998).
[CrossRef]

Opt. Lett. (4)

Other (1)

The extraordinary index of the LiNbO3 crystal is taken as n=2.18; its electro-optic coefficient, as r33=31 pm/V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Diagram of the Littrow cavity with an electro-optic prism.

Fig. 2
Fig. 2

Experimental frequency scans: laser frequency versus voltage applied to the crystal. Cavity length L is (a) 250 mm, (b) 160 mm, (c) 100 mm. The straight lines in (a) and (c) join the frequency jump points (see text).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ=4π/λL+ϕg,
dϕ=4π/λedn-4π/λ2Ldλ,
Δν/ν=eΔn/L.
e/L=di2/dn/tan θ,
di2/dn=sin αcos i2cosα-r2.
Δν/ν=di2/dntan θΔn.

Metrics