Abstract

We introduce a novel concept in Brillouin signal processing based on modification of the optical carrier’s magnitude and phase by stimulated Brillouin scattering–induced depletion. The technique offers wideband processing and low noise and requires only low optical power. Application to the enhancement of a 25-km high-frequency analog link is experimentally demonstrated and yields a 6.5-GHz bandwidth extension and a 13-dB reduction in the link insertion loss without intermodulation distortion.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao, IEEE Photon. Technol. Lett. 10, 139 (1998).
  2. X. S. Yao, presented at the International Topical Meeting on Microwave Photonics, Melbourne, Australia, November 17–19, 1999.
  3. Y. Wang and R. Baettig, IEEE Photon. Technol. Lett. 7, 570 (1995).
    [CrossRef]
  4. X. S. Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
    [CrossRef]
  5. R. G. Waarts, A. A. Friesem, and Y. Hefetz, Opt. Lett. 13, 152 (1988).
    [CrossRef]
  6. A. Loayssa, D. Benito, and M. J. Garde, Opt. Lett. 25, 197 (2000).
    [CrossRef]
  7. H. Schmuck, Electron. Lett. 31, 1848 (1995).
    [CrossRef]
  8. R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 9.
  10. D. Cotter, D. W. Smith, C. G. Atkins, and R. Wyatt, Electron. Lett. 22, 671 (1986).
    [CrossRef]
  11. C. L. Tang, J. Appl. Phys. 37, 2945 (1966).
    [CrossRef]
  12. G. J. Cowle and D. Y. Stepanov, Opt. Lett. 21, 1250 (1996).
    [CrossRef] [PubMed]
  13. F. Devaux, Y. Sorel, and J. F. Kerdiles, J. Lightwave Technol. 11, 1937 (1993).
    [CrossRef]
  14. F. Ramos, J. Marti, V. Polo, and J. M. Fuster, IEEE Photon. Technol. Lett. 10, 1473 (1998).
    [CrossRef]

2000 (1)

1998 (3)

X. S. Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
[CrossRef]

X. S. Yao, IEEE Photon. Technol. Lett. 10, 139 (1998).

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, IEEE Photon. Technol. Lett. 10, 1473 (1998).
[CrossRef]

1996 (1)

1995 (3)

Y. Wang and R. Baettig, IEEE Photon. Technol. Lett. 7, 570 (1995).
[CrossRef]

H. Schmuck, Electron. Lett. 31, 1848 (1995).
[CrossRef]

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

1993 (1)

F. Devaux, Y. Sorel, and J. F. Kerdiles, J. Lightwave Technol. 11, 1937 (1993).
[CrossRef]

1988 (1)

1986 (1)

D. Cotter, D. W. Smith, C. G. Atkins, and R. Wyatt, Electron. Lett. 22, 671 (1986).
[CrossRef]

1966 (1)

C. L. Tang, J. Appl. Phys. 37, 2945 (1966).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 9.

Atkins, C. G.

D. Cotter, D. W. Smith, C. G. Atkins, and R. Wyatt, Electron. Lett. 22, 671 (1986).
[CrossRef]

Baettig, R.

Y. Wang and R. Baettig, IEEE Photon. Technol. Lett. 7, 570 (1995).
[CrossRef]

Benito, D.

Cotter, D.

D. Cotter, D. W. Smith, C. G. Atkins, and R. Wyatt, Electron. Lett. 22, 671 (1986).
[CrossRef]

Cowle, G. J.

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, J. Lightwave Technol. 11, 1937 (1993).
[CrossRef]

Esman, R. D.

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

Friesem, A. A.

Fuster, J. M.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, IEEE Photon. Technol. Lett. 10, 1473 (1998).
[CrossRef]

Garde, M. J.

Hefetz, Y.

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, J. Lightwave Technol. 11, 1937 (1993).
[CrossRef]

Loayssa, A.

Marti, J.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, IEEE Photon. Technol. Lett. 10, 1473 (1998).
[CrossRef]

Polo, V.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, IEEE Photon. Technol. Lett. 10, 1473 (1998).
[CrossRef]

Ramos, F.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, IEEE Photon. Technol. Lett. 10, 1473 (1998).
[CrossRef]

Schmuck, H.

H. Schmuck, Electron. Lett. 31, 1848 (1995).
[CrossRef]

Smith, D. W.

D. Cotter, D. W. Smith, C. G. Atkins, and R. Wyatt, Electron. Lett. 22, 671 (1986).
[CrossRef]

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, J. Lightwave Technol. 11, 1937 (1993).
[CrossRef]

Stepanov, D. Y.

Tang, C. L.

C. L. Tang, J. Appl. Phys. 37, 2945 (1966).
[CrossRef]

Waarts, R. G.

Wang, Y.

Y. Wang and R. Baettig, IEEE Photon. Technol. Lett. 7, 570 (1995).
[CrossRef]

Williams, K. J.

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

Wyatt, R.

D. Cotter, D. W. Smith, C. G. Atkins, and R. Wyatt, Electron. Lett. 22, 671 (1986).
[CrossRef]

Yao, X. S.

X. S. Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
[CrossRef]

X. S. Yao, IEEE Photon. Technol. Lett. 10, 139 (1998).

X. S. Yao, presented at the International Topical Meeting on Microwave Photonics, Melbourne, Australia, November 17–19, 1999.

Electron. Lett. (2)

H. Schmuck, Electron. Lett. 31, 1848 (1995).
[CrossRef]

D. Cotter, D. W. Smith, C. G. Atkins, and R. Wyatt, Electron. Lett. 22, 671 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

R. D. Esman and K. J. Williams, IEEE Photon. Technol. Lett. 7, 218 (1995).
[CrossRef]

X. S. Yao, IEEE Photon. Technol. Lett. 10, 139 (1998).

Y. Wang and R. Baettig, IEEE Photon. Technol. Lett. 7, 570 (1995).
[CrossRef]

X. S. Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
[CrossRef]

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, IEEE Photon. Technol. Lett. 10, 1473 (1998).
[CrossRef]

J. Appl. Phys. (1)

C. L. Tang, J. Appl. Phys. 37, 2945 (1966).
[CrossRef]

J. Lightwave Technol. (1)

F. Devaux, Y. Sorel, and J. F. Kerdiles, J. Lightwave Technol. 11, 1937 (1993).
[CrossRef]

Opt. Lett. (3)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 9.

X. S. Yao, presented at the International Topical Meeting on Microwave Photonics, Melbourne, Australia, November 17–19, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fundamentals of the optical carrier Brillouin processing technique. The carrier is attenuated and phase shifted when it pumps fiber-Brillouin amplification of a counterpropagating Stokes wave.

Fig. 2
Fig. 2

(a) Implementation of the CP, where the optical carrier Brillouin processing occurs. The BEFL efficiency was 13%. (b) Experimental setup used to demonstrate application of the OCBP technique to the enhancement of the transmission performance of a high-frequency analog link. The trasmitter output power was 1.4 dBm. The abbreviations are defined in text.

Fig. 3
Fig. 3

Electrical power at the detector output versus modulating frequency of the EOM for the 25-km fiber link and various powers in the EDFA 980-nm pump. Solid curves, experimental results; solid curves with symbols, theoretical results obtained for fitted parameters.

Fig. 4
Fig. 4

Optical carrier attenuation and phase shift versus EDFA pump power. Trend lines show exponential dependence (linear in decibels) of the attenuation and linear dependence of the phase shift. The correspondence between attenuation and phase-shift values is set by the optical carrier detuning from the center of the Brillouin-loss spectrum, which is precisely temperature controlled in the CP.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

If=I0m1+α2Lνc×cosπλ2Dlf2c+arctanα-ϕνc,

Metrics