Abstract

We demonstrate a novel frequency-stabilization scheme for laser diodes that is capable of linewidth reduction by more than 5 orders of magnitude. In this master–slave scheme the diode laser emission is frequency-offset phase locked to the emission of an electro-optic parametric oscillator (EOPO), and the laser diode is simultaneously used as the EOPO pump source. As a result the initial frequency fluctuations of the pump are reduced to the intrinsic noise level of the EOPO, which can be extremely small. We demonstrate that subhertz linewidths of the beat notes of the signals of two of these systems can be readily achieved if acoustic perturbations are suppressed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  2. T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 411 (1980).
    [CrossRef]
  3. Ch. Salomon, D. Hils, and J. L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988).
    [CrossRef]
  4. A. Wolf and H. R. Telle, Opt. Lett. 23, 1775 (1998).
    [CrossRef]

1998 (1)

1988 (1)

1983 (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1980 (1)

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 411 (1980).
[CrossRef]

Couillaud, B.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 411 (1980).
[CrossRef]

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hall, J. L.

Ch. Salomon, D. Hils, and J. L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988).
[CrossRef]

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 411 (1980).
[CrossRef]

Hils, D.

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Salomon, Ch.

Telle, H. R.

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Wolf, A.

Appl. Phys. B (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 411 (1980).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic scheme of a EOPO: PD, photodiode; AMP, rf amplifier. See text for other definitions.

Fig. 2
Fig. 2

EOPO FM noise-suppression factor (small-signal approximation) for a standard EOPO with resonance width δνHQR=0.0007/τL, and for a SIS EOPO with additional phase lock between pump and EOPO output and control bandwidth fc,PLL=0.04/τL.

Fig. 3
Fig. 3

Experimental setup: LD1, LD2, extended-cavity laser diodes; EOM1, EOM2, electro-optic modulators; POL, 45° polarizer; AMP1, AMP2, rf amplifiers (gain of 0.8 and 140 MV/A, respectively; bandwidth, 300 MHz); PD1–PD3, photodiodes; LO1, LO2, rf local oscillators; PBS, polarizing beam splitter.

Fig. 4
Fig. 4

Beat-note spectrum of two LD’s phase locked to two master EOPO’s. The smooth curve is a fitted Lorentzian with a FWHM of 700 mHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H2=8δνHQRτL2.
Δνm/τL.
SEOPO,NL=16π2NSδνHQR2,
SEOPO,SNL=16π22eIEOPOδνHQR2,

Metrics