Abstract

We propose what is to our knowledge a novel holographic memory system that is simultaneously applicable to data storage and optical computing. We introduce a polarization-modulated reference beam into holographic recording. A desired spatial-frequency component of an object beam is recorded as a polarization-modulated grating, and the other component is recorded as an intensity-modulated grating. Since the polarization-modulated grating rotates the polarization axis of the incident light by 90°, it is possible to distinguish the desired spatial-frequency component of the retrieved image. Utilizing this property, we have successfully performed spatial-frequency filtering and frequency-selective matched filtering. The system is capable of a variety of optical computations, depending on the design of the polarization modulation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, Phys. Rev. Lett. 64, 745 (1990).
    [CrossRef] [PubMed]
  2. D. Mendlovic and N. Konforti, Appl. Opt. 32, 6542 (1993).
    [CrossRef] [PubMed]
  3. Y. Sheng, D. Roberge, H. Szu, and T. Lu, Opt. Lett. 18, 299 (1993).
    [CrossRef]
  4. T. Todorov, L. Nikilova, and N. Tomova, Appl. Opt. 23, 4309 (1984).
    [CrossRef] [PubMed]
  5. S. Calixto and R. A. Lessard, Appl. Opt. 24, 773 (1985).
    [CrossRef]
  6. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, Appl. Opt. 24, 785 (1985).
    [CrossRef]
  7. K. Kawano, T. Ishii, J. Minabe, T. Niitsu, Y. Nishikata, and K. Baba, Opt. Lett. 24, 1269 (1999).
    [CrossRef]
  8. K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).
  9. M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
    [CrossRef]

1999 (1)

1996 (1)

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

1994 (1)

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

1993 (2)

1990 (1)

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, Phys. Rev. Lett. 64, 745 (1990).
[CrossRef] [PubMed]

1985 (2)

1984 (1)

Argoul, F.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, Phys. Rev. Lett. 64, 745 (1990).
[CrossRef] [PubMed]

Arneodo, A.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, Phys. Rev. Lett. 64, 745 (1990).
[CrossRef] [PubMed]

Baba, K.

Calixto, S.

Freysz, E.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, Phys. Rev. Lett. 64, 745 (1990).
[CrossRef] [PubMed]

Fujiwara, H.

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Hayakawa, M.

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Ishii, T.

Kawano, K.

Komatsu, R.

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

Konforti, N.

Lessard, R. A.

Lu, T.

Mendlovic, D.

Minabe, J.

Mukaida, K.

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Nakagawa, K.

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Niitsu, T.

Nikilova, L.

Nikolova, L.

Nishikata, Y.

Pouligny, B.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, Phys. Rev. Lett. 64, 745 (1990).
[CrossRef] [PubMed]

Roberge, D.

Sato, M.

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Sheng, Y.

Stoyanova, K.

Szu, H.

Todorov, T.

Tomova, N.

Appl. Opt. (4)

Macromol. Rapid Commun. (1)

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, Phys. Rev. Lett. 64, 745 (1990).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for holographic data storage and optical computing: GLP1, GLP2, Glan laser prisms; PBS, polarizing beam splitter; M1M7, mirrors; L1L5, lenses; λ/2, half-wave. See text for other definitions.

Fig. 2
Fig. 2

(a) Example of an object beam produced by SLM1. The object beam has intensity modulation; the polarization is 90°. (b) Example of a reference beam produced by SLM2. The reference beam has polarization modulation.

Fig. 3
Fig. 3

(a) Retrieved image. (b) Example of an optical computing application. The high frequency of the object beam is obtained from a 90°-polarization image of the retrieved data.

Fig. 4
Fig. 4

(a) Experimental result of a correlation signal between the object image and a triangle by means of matched filtering. (b) Result of simulation of the correlation signal, as calculated by fast Fourier transformation. Arrows, autocorrelation signals.

Fig. 5
Fig. 5

(a) Relative intensities of cross-correlation and autocorrelation signals of the experimental result. (b) 90°-polarization component of the relative intensities. The high frequency is separated from the correlation signal.

Metrics