Abstract

A novel method is described for fast frequency modulation or frequency control of diode lasers that avoids problems associated with bias current modulation, namely, amplitude modulation and thermal phase delays. The method is based on amplitude-modulated, noninterfering control light with a wavelength near the transparency region of the laser diode, which specifically modifies the spectral gain profile to yield a constant gain but a controllable refractive index at the lasing wavelength. This permits amplitude-modulation-free frequency modulation at modulation frequencies up to the relaxation oscillation frequency. A phase lock between the emissions of two extended-cavity diode lasers that could not be achieved with bias current modulation was achieved by this method.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-19, 582 (1982).
    [CrossRef]
  2. G. C. Bjorklund and M. D. Levenson, Appl. Phys. B 32, 145 (1983).
    [CrossRef]
  3. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
    [CrossRef]
  4. H. R. Telle, Spectrochim. Acta Rev. 15, 301 (1993).
  5. M. Ohtsu, Highly Coherent Semiconductor Laser (Artech House, Boston, Mass., 1992).
  6. I. Dubinsky, K. Rybak, J. I. Steinfeld, and R. W. Field, Appl. Phys. B 67, 481 (1998).
    [CrossRef]
  7. I. Linnerud, P. Kaspersen, and T. Jaeger, Appl. Phys. B 67, 297 (1998).
    [CrossRef]

1998 (2)

I. Dubinsky, K. Rybak, J. I. Steinfeld, and R. W. Field, Appl. Phys. B 67, 481 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jaeger, Appl. Phys. B 67, 297 (1998).
[CrossRef]

1995 (1)

W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

1993 (1)

H. R. Telle, Spectrochim. Acta Rev. 15, 301 (1993).

1983 (1)

G. C. Bjorklund and M. D. Levenson, Appl. Phys. B 32, 145 (1983).
[CrossRef]

1982 (1)

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-19, 582 (1982).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund and M. D. Levenson, Appl. Phys. B 32, 145 (1983).
[CrossRef]

D’Evelyn, L.

W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Dubinsky, I.

I. Dubinsky, K. Rybak, J. I. Steinfeld, and R. W. Field, Appl. Phys. B 67, 481 (1998).
[CrossRef]

Field, R. W.

I. Dubinsky, K. Rybak, J. I. Steinfeld, and R. W. Field, Appl. Phys. B 67, 481 (1998).
[CrossRef]

Fox, W.

W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Hollberg, L.

W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-19, 582 (1982).
[CrossRef]

Jaeger, T.

I. Linnerud, P. Kaspersen, and T. Jaeger, Appl. Phys. B 67, 297 (1998).
[CrossRef]

Kaspersen, P.

I. Linnerud, P. Kaspersen, and T. Jaeger, Appl. Phys. B 67, 297 (1998).
[CrossRef]

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-19, 582 (1982).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-19, 582 (1982).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund and M. D. Levenson, Appl. Phys. B 32, 145 (1983).
[CrossRef]

Linnerud, I.

I. Linnerud, P. Kaspersen, and T. Jaeger, Appl. Phys. B 67, 297 (1998).
[CrossRef]

Ohtsu, M.

M. Ohtsu, Highly Coherent Semiconductor Laser (Artech House, Boston, Mass., 1992).

Robinson, H. G.

W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Rybak, K.

I. Dubinsky, K. Rybak, J. I. Steinfeld, and R. W. Field, Appl. Phys. B 67, 481 (1998).
[CrossRef]

Steinfeld, J. I.

I. Dubinsky, K. Rybak, J. I. Steinfeld, and R. W. Field, Appl. Phys. B 67, 481 (1998).
[CrossRef]

Telle, H. R.

H. R. Telle, Spectrochim. Acta Rev. 15, 301 (1993).

Weimer, C. S.

W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-19, 582 (1982).
[CrossRef]

Appl. Phys. B (3)

G. C. Bjorklund and M. D. Levenson, Appl. Phys. B 32, 145 (1983).
[CrossRef]

I. Dubinsky, K. Rybak, J. I. Steinfeld, and R. W. Field, Appl. Phys. B 67, 481 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jaeger, Appl. Phys. B 67, 297 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. QE-19, 582 (1982).
[CrossRef]

Proc. SPIE (1)

W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Spectrochim. Acta Rev. (1)

H. R. Telle, Spectrochim. Acta Rev. 15, 301 (1993).

Other (1)

M. Ohtsu, Highly Coherent Semiconductor Laser (Artech House, Boston, Mass., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top, amplitude and bottom, phase of the FM transfer function Hf,electr.f of LD1 for injection current (circles) and optoelectronic (triangles) modulation.

Fig. 2
Fig. 2

Experimental setup for phase locking of two diode lasers by optoelectronic frequency control: ECDL’s, extended-cavity diode lasers; LD’s, laser diodes; BS’s, beam splitters; FI’s, Faraday isolators; FPI, Fabry–Perot interferometer; PD’s, photodiodes; AMP, amplifier, DBM, double-balanced mixer; OSC, oscillator.

Fig. 3
Fig. 3

rf spectrum of the beat note between ECDL1 and ECDL2, which is frequency-offset phase locked by use of optoelectronic frequency control. Vertical scale, 10 dB/division; horizontal scale, 2 MHz/division; resolution bandwidth, 30 kHz.

Fig. 4
Fig. 4

Dependence of the AM generated by optoelectronic modulation on the wavelength of control light λcontrol for a FM of Δν175 MHz (left axis, squares) and gain for the control light coupled into LD1 (right axis, triangles) measured for a lasing wavelength of λ=870 nm; a.u., arbitrary units.

Metrics