Abstract

We observed the phase relation among subharmonic pulses generated by a femtosecond optical parametric oscillator (OPO). The ratio of the optical frequencies of the idler, the signal, and the pump pulses was set to 1:2:3. Under these conditions the wavelengths of the second harmonic of the signal pulse and the sum frequency between the pump and the idler pulses are the same. The beat signal between these two pulses represents the phase relationship among the pump, the signal, and the idler. The beat frequency varied when the cavity length of the OPO was changed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 411 (1999).
    [CrossRef]
  2. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 631 (1999).
    [CrossRef]
  3. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
    [CrossRef]
  4. L. Xu, Ch. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, Opt. Lett. 21, 2008 (1996).
    [CrossRef] [PubMed]
  5. T. W. Hänsch, Opt. Commun. 80, 71 (1990).
    [CrossRef]
  6. K. Shimoda, Jpn. J. Appl. Phys. 34, 3566 (1995).
    [CrossRef]
  7. L. Zhang, Q. Zheng, and T. Kobayashi, J. Opt. Soc. Am. B 14, 979 (1997).
    [CrossRef]
  8. J. E. Bernard, B. G. Whitford, and L. Marmet, Opt. Lett. 24, 98 (1999).
    [CrossRef]
  9. P. T. Nee and N. C. Wong, Opt. Lett. 23, 46 (1998).
    [CrossRef]
  10. O. Pfister, M. Mürtz, J. S. Wells, L. Hollberg, and J. T. Murray, Opt. Lett. 21, 1387 (1996).
    [CrossRef] [PubMed]
  11. A. Yariv, Optical Electronics, 3rd ed. (Holt-Saunders, New York, 1985), p. 16.
  12. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), p. 118.
  13. W. S. Pelouch, P. E. Powers, and C. L. Tang, Opt. Lett. 17, 1070 (1992).
    [CrossRef] [PubMed]

1999 (4)

1998 (1)

1997 (1)

1996 (2)

1995 (1)

K. Shimoda, Jpn. J. Appl. Phys. 34, 3566 (1995).
[CrossRef]

1992 (1)

1990 (1)

T. W. Hänsch, Opt. Commun. 80, 71 (1990).
[CrossRef]

Angelow, G.

Bernard, J. E.

Brabec, T.

Chen, Y.

Cho, S. H.

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Fujimoto, J. G.

Gallmann, L.

Hänsch, T. W.

Haus, H. A.

Hollberg, L.

Ippen, E. P.

Kärtner, F. X.

Keller, U.

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 631 (1999).
[CrossRef]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Kobayashi, T.

Krausz, F.

Marmet, L.

Matuschek, N.

Morgner, U.

Morier-Genoud, F.

Murray, J. T.

Mürtz, M.

Nee, P. T.

Pelouch, W. S.

Pfister, O.

Poppe, A.

Powers, P. E.

Scheuer, V.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), p. 118.

Shimoda, K.

K. Shimoda, Jpn. J. Appl. Phys. 34, 3566 (1995).
[CrossRef]

Spielmann, Ch.

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 631 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 631 (1999).
[CrossRef]

Tang, C. L.

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Tschudi, T.

Wells, J. S.

Whitford, B. G.

Wong, N. C.

Xu, L.

Yariv, A.

A. Yariv, Optical Electronics, 3rd ed. (Holt-Saunders, New York, 1985), p. 16.

Zhang, L.

Zheng, Q.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of the femtosecond OPO: OC, output coupler; CM’s, chirped mirrors; PZT, piezoelectric transducer; PM, photomultiplier. Pump + Signal and Pump + Idler denote sum frequencies (see text).

Fig. 2
Fig. 2

Schematic diagram of the beat signal measurement. Two successive pulses are shown in (a). Ep, Es, and Ei represent the electric fields of the pump, the signal, and the idler, respectively. Carrier phase shifts are denoted Δθi, Δθs, and Δθp. E2s and Ep+i denote the electric field of the SH of the signal and the SF between the pump and the idler. Six successive pulses and the corresponding two lowest-frequency components of the beating pulse train are drawn in (b).

Fig. 3
Fig. 3

(a) Beat signal in the range 0 Hz–100 MHz acquired by changing mirror position Δl. The cavity length decreases as Δl increases. (b) Corresponding signal spectra at Δl=0 and Δl=0.22 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

et=E˜2stcos2ωst+2θs+E˜p+itcosωp+ωit+θp+θi=ReE˜2stexpi2ωst+2θs+E˜p+it×expiωp+ωit+θp+θiReVt,
VtVt*=E˜2st2+E˜p+it2+2E˜2stE˜p+it×cos2ωs-ωp+ωit+2θs-θp+θi.
f=Δθr/2π×F
Δθr=12πΔl/λs,

Metrics