Abstract

A dc-voltage-controlled optoelectronic delay line for continuous tuning of the relative delay time of an optical pulse train generated from a gain-switched laser diode is demonstrated. A maximum tunable range delay time of 3.9 ns (2 periods) for optical pulses at a 500-MHz repetition rate is reported, which corresponds to a phase shift of as much as 4π. The tuning responsivity and resolution of the current apparatus are 0.54 ps/mV and <0.2 ps, respectively. The measured timing fluctuation and long-term drift at any delay time are 0.13 ps and 20 fs/min, respectively. This scheme further permits the simultaneous phase tracking of the laser pulse train to unknown signals generated from the device under test.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Kaiser, Ultrashort Laser Pulses: Generation and Applications, 2nd ed. (Springer-Verlag, New York, 1993), Chaps. 4–6, pp. 113–274.
  2. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, New York, 1986), Chap. 4.
  3. C.-L. Pan, G.-R. Lin, J.-M. Shieh, C.-W. Tsai, and S.-C. Wang, Intl. J. High Speed Electron. Syst. 8, 719 (1997).
    [CrossRef]
  4. J. M. Bostick, S. A. Mounter, and C. K. Johnson, Opt. Commun. 69, 54 (1988).
    [CrossRef]
  5. C. K. Johnson and J. Qian, Rev. Sci. Instrum. 61, 1158 (1990).
    [CrossRef]
  6. H.-H. Wu, G.-R. Lin, and C.-L. Pan, IEEE Photon. Technol. Lett. 7, 670 (1995).
    [CrossRef]
  7. A. W. Houghton and P. V. Brennan, Proc. IEE Section H 139, 31 (1992).
  8. G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, and C.-L. Pan, IEEE Trans. Microwave Theory Tech. 46, 1419 (1998).
    [CrossRef]

1998 (1)

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, and C.-L. Pan, IEEE Trans. Microwave Theory Tech. 46, 1419 (1998).
[CrossRef]

1997 (1)

C.-L. Pan, G.-R. Lin, J.-M. Shieh, C.-W. Tsai, and S.-C. Wang, Intl. J. High Speed Electron. Syst. 8, 719 (1997).
[CrossRef]

1995 (1)

H.-H. Wu, G.-R. Lin, and C.-L. Pan, IEEE Photon. Technol. Lett. 7, 670 (1995).
[CrossRef]

1992 (1)

A. W. Houghton and P. V. Brennan, Proc. IEE Section H 139, 31 (1992).

1990 (1)

C. K. Johnson and J. Qian, Rev. Sci. Instrum. 61, 1158 (1990).
[CrossRef]

1988 (1)

J. M. Bostick, S. A. Mounter, and C. K. Johnson, Opt. Commun. 69, 54 (1988).
[CrossRef]

Bostick, J. M.

J. M. Bostick, S. A. Mounter, and C. K. Johnson, Opt. Commun. 69, 54 (1988).
[CrossRef]

Brennan, P. V.

A. W. Houghton and P. V. Brennan, Proc. IEE Section H 139, 31 (1992).

Chuang, Y.-H.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, and C.-L. Pan, IEEE Trans. Microwave Theory Tech. 46, 1419 (1998).
[CrossRef]

Fleming, G. R.

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, New York, 1986), Chap. 4.

Houghton, A. W.

A. W. Houghton and P. V. Brennan, Proc. IEE Section H 139, 31 (1992).

Hwang, T.-S.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, and C.-L. Pan, IEEE Trans. Microwave Theory Tech. 46, 1419 (1998).
[CrossRef]

Johnson, C. K.

C. K. Johnson and J. Qian, Rev. Sci. Instrum. 61, 1158 (1990).
[CrossRef]

J. M. Bostick, S. A. Mounter, and C. K. Johnson, Opt. Commun. 69, 54 (1988).
[CrossRef]

Kaiser, W.

W. Kaiser, Ultrashort Laser Pulses: Generation and Applications, 2nd ed. (Springer-Verlag, New York, 1993), Chaps. 4–6, pp. 113–274.

Lin, G.-R.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, and C.-L. Pan, IEEE Trans. Microwave Theory Tech. 46, 1419 (1998).
[CrossRef]

C.-L. Pan, G.-R. Lin, J.-M. Shieh, C.-W. Tsai, and S.-C. Wang, Intl. J. High Speed Electron. Syst. 8, 719 (1997).
[CrossRef]

H.-H. Wu, G.-R. Lin, and C.-L. Pan, IEEE Photon. Technol. Lett. 7, 670 (1995).
[CrossRef]

Mounter, S. A.

J. M. Bostick, S. A. Mounter, and C. K. Johnson, Opt. Commun. 69, 54 (1988).
[CrossRef]

Pan, C.-L.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, and C.-L. Pan, IEEE Trans. Microwave Theory Tech. 46, 1419 (1998).
[CrossRef]

C.-L. Pan, G.-R. Lin, J.-M. Shieh, C.-W. Tsai, and S.-C. Wang, Intl. J. High Speed Electron. Syst. 8, 719 (1997).
[CrossRef]

H.-H. Wu, G.-R. Lin, and C.-L. Pan, IEEE Photon. Technol. Lett. 7, 670 (1995).
[CrossRef]

Qian, J.

C. K. Johnson and J. Qian, Rev. Sci. Instrum. 61, 1158 (1990).
[CrossRef]

Shieh, J.-M.

C.-L. Pan, G.-R. Lin, J.-M. Shieh, C.-W. Tsai, and S.-C. Wang, Intl. J. High Speed Electron. Syst. 8, 719 (1997).
[CrossRef]

Tsai, C.-W.

C.-L. Pan, G.-R. Lin, J.-M. Shieh, C.-W. Tsai, and S.-C. Wang, Intl. J. High Speed Electron. Syst. 8, 719 (1997).
[CrossRef]

Wang, S.-C.

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, and C.-L. Pan, IEEE Trans. Microwave Theory Tech. 46, 1419 (1998).
[CrossRef]

C.-L. Pan, G.-R. Lin, J.-M. Shieh, C.-W. Tsai, and S.-C. Wang, Intl. J. High Speed Electron. Syst. 8, 719 (1997).
[CrossRef]

Wu, H.-H.

H.-H. Wu, G.-R. Lin, and C.-L. Pan, IEEE Photon. Technol. Lett. 7, 670 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H.-H. Wu, G.-R. Lin, and C.-L. Pan, IEEE Photon. Technol. Lett. 7, 670 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G.-R. Lin, T.-S. Hwang, Y.-H. Chuang, S.-C. Wang, and C.-L. Pan, IEEE Trans. Microwave Theory Tech. 46, 1419 (1998).
[CrossRef]

Intl. J. High Speed Electron. Syst. (1)

C.-L. Pan, G.-R. Lin, J.-M. Shieh, C.-W. Tsai, and S.-C. Wang, Intl. J. High Speed Electron. Syst. 8, 719 (1997).
[CrossRef]

Opt. Commun. (1)

J. M. Bostick, S. A. Mounter, and C. K. Johnson, Opt. Commun. 69, 54 (1988).
[CrossRef]

Proc. IEE Section H (1)

A. W. Houghton and P. V. Brennan, Proc. IEE Section H 139, 31 (1992).

Rev. Sci. Instrum. (1)

C. K. Johnson and J. Qian, Rev. Sci. Instrum. 61, 1158 (1990).
[CrossRef]

Other (2)

W. Kaiser, Ultrashort Laser Pulses: Generation and Applications, 2nd ed. (Springer-Verlag, New York, 1993), Chaps. 4–6, pp. 113–274.

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, New York, 1986), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the voltage-controlled OCTC: DUT, device under test; FPS, frequency prescaler; IDC, driving current; LD, laser diode; OP, operational amplifier i.c.; PC, photoconductor; PFD, phase-frequency detector; VCO, voltage-controlled oscillator; VREF, controlled voltage; Amp., amplifier.

Fig. 2
Fig. 2

Time-delayed optical pulse train with a 500-MHz repetition rate controlled by the ODTC at two values VREF with respect to the original pulse train (upper trace). The lower traces in (a) and (b) show the optical pulse train delayed by setting of VREF at -3.19 and 1.43 V, respectively.

Fig. 3
Fig. 3

Relative delay time and phase shift of optical pulses as a function of VREF. Inset, linearity of the transfer function of the ODTC.

Fig. 4
Fig. 4

Tuning accuracy and stability of the voltage-controlled ODTC under a step-changed test. Inset, time-delayed traces of the optical pulse by discrete tuning of the OTDC with ΔVREF=0.07 V.

Metrics