Abstract

Experiments demonstrate a dramatic decrease in polarization-instability threshold as an optical pulse is tuned near the short-wavelength edge of the photonic bandgap formed by a fiber Bragg grating. These enhanced nonlinear interactions and birefringent effects are modeled with coupled-mode numerical simulations. Nonlinearities are shown to increase much more rapidly than the effective birefringence as the pulse wavelength approaches the bandgap edge.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
    [CrossRef]
  2. H. G. Winful, Opt. Lett. 11, 3 (1986).
  3. C. Martijn de Sterke and J. E. Sipe, Opt. Lett. 16, 202 (1991).
    [CrossRef]
  4. S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
    [CrossRef]
  5. B. J. Eggleton, C. Martijn de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 16, 587 (1999).
    [CrossRef]
  6. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming, Opt. Lett. 23, 259 (1998).
    [CrossRef]
  7. S. Pereira and J. E. Sipe, Opt. Express 3, 418 (1998).
    [CrossRef] [PubMed]
  8. H. M. Keller, S. Pereira, and J. E. Sipe, Opt. Commun. 170, 35 (1999).
    [CrossRef]
  9. B. J. Eggleton, C. Martijn de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 14, 2980 (1997).
    [CrossRef]

1999

1998

1997

1991

1986

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

H. G. Winful, Opt. Lett. 11, 3 (1986).

1985

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

Assanto, G.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Broderick, N. G. R.

Eggleton, B. J.

Ibsen, M.

Keller, H. M.

H. M. Keller, S. Pereira, and J. E. Sipe, Opt. Commun. 170, 35 (1999).
[CrossRef]

Laming, R. I.

Martijn de Sterke, C.

Pereira, S.

H. M. Keller, S. Pereira, and J. E. Sipe, Opt. Commun. 170, 35 (1999).
[CrossRef]

S. Pereira and J. E. Sipe, Opt. Express 3, 418 (1998).
[CrossRef] [PubMed]

Richardson, D. J.

Seaton, C. T.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Sipe, J. E.

Slusher, R. E.

Stegeman, G. I.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Stolen, R. H.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Taverner, D.

Trillo, S.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Wabnitz, S.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Winful, H. G.

H. G. Winful, Opt. Lett. 11, 3 (1986).

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

Appl. Phys. Lett.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

H. M. Keller, S. Pereira, and J. E. Sipe, Opt. Commun. 170, 35 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmission of the fiber grating for the fast x axis (filled circles) and the slow y axis (filled squares). The difference in the bandgaps is primarily at the long-wavelength edge and corresponds to a birefringence of 3.6×10-6. The resolution of these data is limited by the spectral width of the 80-ps pulse (spectrum shown as a dotted curve) used in the experiment, i.e., a spectral resolution of 0.03 nm full width at half-maximum. The schematic inset shows the orientation of the fast and slow axes with respect to the fiber and input optical axes.

Fig. 2
Fig. 2

Theoretical values for the effective birefringence (dashed and dashed–dotted curves), nonlinearity (solid curve), and polarization-instability threshold (dotted and dashed–double-dotted curves) as a function of detuning from the short-wavelength bandgap edge shown for asymmetry values of M=0 (dashed and dotted curves) and M=0.6 (dashed–dotted and dashed–double-dotted curves). These analytical results apply to a single-frequency component of a pulse spectrum.

Fig. 3
Fig. 3

Threshold intensities for polarization instability for experimental (filled circles) and numerically simulated (filled squares) fiber Bragg gratings 7.7 cm in length with a birefringence of 3.6×10-6 and an index modulation of 8×10-5. Experimental pulse shapes are shown in the inset for the linear and nonlinear regimes for fast (solid curves) and slow (dotted and dashed curves) axes. The lower solid and dashed curves are in the linear regime at 0.5 GW/cm2, the upper solid and dotted curves are at 10 GW/cm2. The detuning is f=1.4.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δnbr=ny-nx,
Δnnl=n2I,
It=1.5Δnbr/n2.
vgvf2-11/2/f,
Fbrf-M/f2-11/2,
M=δny-δnx/Δnbr.
Fnl=3-vg/v2/2vg/v2,

Metrics