Abstract

We demonstrate what is to our knowledge the first optical parametric oscillator (OPO) based on a cylindrical phase-matched nonlinear crystal. Experiments are performed with an uncoated KTiOPO4 crystal cut as a cylinder with a diameter of 21.2 mm and a thickness of 5 mm. We achieve 20.5-internal-degree angular tuning in a 1064-nm-pumped type III OPO, which would correspond to 36° external angular rotation for a parallelepipedal crystal. The goals of using such a device are to narrow the spectral width of the output and to enhance the spatial quality of the generated beams in widely tunable OPO’s.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer, Quantum Electronics: A Treatise (Academic, San Diego, Calif., 1975), Vol. 1, p. 588.
  2. D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
    [CrossRef]
  3. K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
    [CrossRef]
  4. B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” French patent 2,771,519 (May 28, 1999); “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” PCT/FR98/02563 patent WO99/28785 (October 6, 1999).
  5. G. Marnier and B. Boulanger, Opt. Commun. 72, 139 (1989).
    [CrossRef]
  6. B. Boulanger, J. P. Fève, G. Marnier, and B. Ménaert, Pure Appl. Opt. 7, 239 (1998).
    [CrossRef]
  7. J. J. Zondy, Opt. Commun. 149, 181 (1998).
    [CrossRef]
  8. J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
    [CrossRef]

1998

B. Boulanger, J. P. Fève, G. Marnier, and B. Ménaert, Pure Appl. Opt. 7, 239 (1998).
[CrossRef]

J. J. Zondy, Opt. Commun. 149, 181 (1998).
[CrossRef]

1994

J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
[CrossRef]

1992

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

1991

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

1989

G. Marnier and B. Boulanger, Opt. Commun. 72, 139 (1989).
[CrossRef]

Boulanger, B.

B. Boulanger, J. P. Fève, G. Marnier, and B. Ménaert, Pure Appl. Opt. 7, 239 (1998).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
[CrossRef]

G. Marnier and B. Boulanger, Opt. Commun. 72, 139 (1989).
[CrossRef]

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” French patent 2,771,519 (May 28, 1999); “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” PCT/FR98/02563 patent WO99/28785 (October 6, 1999).

Byer, R. L.

R. L. Byer, Quantum Electronics: A Treatise (Academic, San Diego, Calif., 1975), Vol. 1, p. 588.

Fève, J. P.

B. Boulanger, J. P. Fève, G. Marnier, and B. Ménaert, Pure Appl. Opt. 7, 239 (1998).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
[CrossRef]

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” French patent 2,771,519 (May 28, 1999); “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” PCT/FR98/02563 patent WO99/28785 (October 6, 1999).

Kato, K.

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

Marnier, G.

B. Boulanger, J. P. Fève, G. Marnier, and B. Ménaert, Pure Appl. Opt. 7, 239 (1998).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
[CrossRef]

G. Marnier and B. Boulanger, Opt. Commun. 72, 139 (1989).
[CrossRef]

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” French patent 2,771,519 (May 28, 1999); “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” PCT/FR98/02563 patent WO99/28785 (October 6, 1999).

Ménaert, B.

B. Boulanger, J. P. Fève, G. Marnier, and B. Ménaert, Pure Appl. Opt. 7, 239 (1998).
[CrossRef]

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” French patent 2,771,519 (May 28, 1999); “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” PCT/FR98/02563 patent WO99/28785 (October 6, 1999).

Roberts, D. A.

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

Zondy, J. J.

J. J. Zondy, Opt. Commun. 149, 181 (1998).
[CrossRef]

Appl. Opt.

J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
[CrossRef]

IEEE J. Quantum Electron.

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

Opt. Commun.

G. Marnier and B. Boulanger, Opt. Commun. 72, 139 (1989).
[CrossRef]

J. J. Zondy, Opt. Commun. 149, 181 (1998).
[CrossRef]

Pure Appl. Opt.

B. Boulanger, J. P. Fève, G. Marnier, and B. Ménaert, Pure Appl. Opt. 7, 239 (1998).
[CrossRef]

Other

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” French patent 2,771,519 (May 28, 1999); “Moyens pour la génération de rayonnements optiques accordables au moins en fréquence,” PCT/FR98/02563 patent WO99/28785 (October 6, 1999).

R. L. Byer, Quantum Electronics: A Treatise (Academic, San Diego, Calif., 1975), Vol. 1, p. 588.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the OPO: P, 4-mm-diameter pinhole; H, half-wave plate; M1, M2, plane mirrors of the cavity. (b) Schematic top view of the beams into the cavity. (c) Schematic side view of the beams. wi,r,e, pump waist radius (i, r, and e are the incident, refracted, and emerging beams, respectively); z, distance between the incident pump waist and the entrance surface of the cylinder; d, distance between the entrance surface of the crystal and the refracted beam waist.

Fig. 2
Fig. 2

Calculated position d/D of the refracted waist versus distance z for different incident pump sizes wxzi. d/D=0.5 for a waist refracted at the center of the cylinder of diameter D. The values wxzr are given for d/D=0.5.

Fig. 3
Fig. 3

Experimental (circles) and calculated (dashed curve) tuning curves of type III OPO for a propagation in the xz plane of KTP. The calculations are taken from Ref. 3. M1, M2, mirrors of the OPO.

Fig. 4
Fig. 4

OPO threshold energy measurements versus phase-matching directions. The solid curve is the walk-off angle calculated from Ref. 3.

Fig. 5
Fig. 5

Experimental gain curves for different directions of propagation. The solid lines are linear fits of our data.

Metrics