Abstract

We demonstrate experimentally for what is to our knowledge the first time that air–silica microstructure optical fibers can exhibit anomalous dispersion at visible wavelengths. We exploit this feature to generate an optical continuum 550 THz in width, extending from the violet to the infrared, by propagating pulses of 100-fs duration and kilowatt peak powers through a microstructure fiber near the zero-dispersion wavelength.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1995).
  2. R. H. Stolen and A. Johnson, IEEE J. Quantum Electron. QE-22, 2154 (1986); W. Tomlinson, R. Stolen, and C. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [CrossRef]
  3. E. A. J. Marcatili, Bell Syst. Tech. J. 54, 645 (1974); P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
    [CrossRef]
  4. R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.
  5. J. Knight, J. Broeng, T. Birks, and P. Russell, Science282, 1476 (1998); J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
    [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  7. D. Mogilevtsev, T. Birks, and P. Russell, Opt. Lett. 23, 1662 (1998); T. Monro, D. Richardson, N. Broderick, and P. Bennett, J. Lightwave Technol. 17, 1093 (1999).
    [CrossRef]
  8. H. Shang, Electron. Lett. 17, 603 (1981).
    [CrossRef]
  9. R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
    [CrossRef]
  10. F. Mitschke and L. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]
  11. J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531 (1989); W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985).
    [CrossRef] [PubMed]
  12. M. Pshenichnikov, W. de Boeij, and D. Wiersma, Opt. Lett. 19, 572 (1994); see also, for example, R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, Berlin, 1989).
    [CrossRef] [PubMed]

1998 (1)

1997 (1)

1994 (1)

1989 (1)

J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531 (1989); W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985).
[CrossRef] [PubMed]

1986 (2)

F. Mitschke and L. Mollenauer, Opt. Lett. 11, 659 (1986).
[CrossRef] [PubMed]

R. H. Stolen and A. Johnson, IEEE J. Quantum Electron. QE-22, 2154 (1986); W. Tomlinson, R. Stolen, and C. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[CrossRef]

1981 (1)

H. Shang, Electron. Lett. 17, 603 (1981).
[CrossRef]

1978 (1)

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

1974 (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 54, 645 (1974); P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1995).

Birks, T.

D. Mogilevtsev, T. Birks, and P. Russell, Opt. Lett. 23, 1662 (1998); T. Monro, D. Richardson, N. Broderick, and P. Bennett, J. Lightwave Technol. 17, 1093 (1999).
[CrossRef]

J. Knight, J. Broeng, T. Birks, and P. Russell, Science282, 1476 (1998); J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Birks, T. A.

Broeng, J.

J. Knight, J. Broeng, T. Birks, and P. Russell, Science282, 1476 (1998); J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

de Boeij, W.

DiGiovanni, D. J.

R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.

Grischkowsky, D.

J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531 (1989); W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985).
[CrossRef] [PubMed]

Johnson, A.

R. H. Stolen and A. Johnson, IEEE J. Quantum Electron. QE-22, 2154 (1986); W. Tomlinson, R. Stolen, and C. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[CrossRef]

Knight, J.

J. Knight, J. Broeng, T. Birks, and P. Russell, Science282, 1476 (1998); J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Knight, J. C.

Lin, C.

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 54, 645 (1974); P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Mitschke, F.

Mogilevtsev, D.

Mollenauer, L.

Pshenichnikov, M.

Rothenberg, J. E.

J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531 (1989); W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985).
[CrossRef] [PubMed]

Russell, P.

D. Mogilevtsev, T. Birks, and P. Russell, Opt. Lett. 23, 1662 (1998); T. Monro, D. Richardson, N. Broderick, and P. Bennett, J. Lightwave Technol. 17, 1093 (1999).
[CrossRef]

J. Knight, J. Broeng, T. Birks, and P. Russell, Science282, 1476 (1998); J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Russell, P. St. J.

Shang, H.

H. Shang, Electron. Lett. 17, 603 (1981).
[CrossRef]

Stolen, R. H.

R. H. Stolen and A. Johnson, IEEE J. Quantum Electron. QE-22, 2154 (1986); W. Tomlinson, R. Stolen, and C. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[CrossRef]

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Wagener, J. L.

R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.

Wiersma, D.

Windeler, R. S.

R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 54, 645 (1974); P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Electron. Lett. (1)

H. Shang, Electron. Lett. 17, 603 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen and A. Johnson, IEEE J. Quantum Electron. QE-22, 2154 (1986); W. Tomlinson, R. Stolen, and C. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Phys. Rev. Lett. (1)

J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531 (1989); W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985).
[CrossRef] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1995).

R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.

J. Knight, J. Broeng, T. Birks, and P. Russell, Science282, 1476 (1998); J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Electron micrograph image of the inner cladding and core of the air–silica microstructure fiber. (b) Spatial interference pattern formed by interfering the collimated output of the microstructure fiber with the output of a single-mode fiber. The clear fringe pattern indicates that only a single transverse mode is excited in the microstructure fiber.

Fig. 2
Fig. 2

(a) Calculated waveguide GVD for a silica fiber with a core–cladding index difference of 0.1 and a core diameter of 1 µm (solid curve) and a fiber with a core–cladding index difference of 0.3 and a core diameter of 2 µm (dotted curve). The GVD of bulk silica is shown by the dashed curve. (b) Measured GVD of the microstructure fiber (squares) and a standard single-mode fiber (circles).

Fig. 3
Fig. 3

(a) Autocorrelation (i) and spectrum (ii) of an initial 100-fs pulse after it propagates through a 20-m section of microstructure fiber. The input pulse spectrum is shown by the dashed curve. (b) Spectrum generated in a 10-cm section of microstructure fiber by use of 100-fs, 770-nm input pulses with peak powers of 20 W (iii), 220 W (iv), and 1.6 kW (v).

Fig. 4
Fig. 4

Optical spectrum of the continuum generated in a 75-cm section of microstructure fiber. The dashed curve shows the spectrum of the initial 100-fs pulse.

Metrics