Abstract

Fourier synthesis of optical-pulse trains based on optical phase locking of three cw semiconductor lasers has been demonstrated by use of a semiconductor optical amplifier as a four-wave mixer. The temporal waveforms of the pulse trains were directly observed at a repetition rate of 9.6  GHz by a fast sampling oscilloscope. The FM sideband heterodyne technique was employed to realize a stable homodyne optical phase-locked loop.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Hayes and L. M. Laughman, Appl. Opt. 16, 263 (1977).
    [CrossRef]
  2. T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
    [CrossRef]
  3. C. Koch and H. R. Telle, Opt. Commun. 91, 371 (1992).
    [CrossRef]
  4. A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
    [CrossRef]
  5. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  6. G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
    [CrossRef]
  7. J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
    [CrossRef]
  8. H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
    [CrossRef]
  9. D. Eliyahu, R. A. Salvatore, and A. Yariv, J. Opt. Soc. Am. B 14, 167 (1997).
    [CrossRef]
  10. D. J. Derickson, P. A. Morton, J. E. Bowers, and R. L. Thornton, Appl. Phys. Lett. 59, 3372 (1991).
    [CrossRef]

1997 (1)

1996 (1)

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

1994 (1)

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
[CrossRef]

1993 (2)

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

1992 (1)

C. Koch and H. R. Telle, Opt. Commun. 91, 371 (1992).
[CrossRef]

1991 (1)

D. J. Derickson, P. A. Morton, J. E. Bowers, and R. L. Thornton, Appl. Phys. Lett. 59, 3372 (1991).
[CrossRef]

1989 (1)

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1977 (1)

Bowers, J. E.

D. J. Derickson, P. A. Morton, J. E. Bowers, and R. L. Thornton, Appl. Phys. Lett. 59, 3372 (1991).
[CrossRef]

Dall'Ara, R.

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

Dawson, J. W.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
[CrossRef]

Derickson, D. J.

D. J. Derickson, P. A. Morton, J. E. Bowers, and R. L. Thornton, Appl. Phys. Lett. 59, 3372 (1991).
[CrossRef]

D'Ottavi, A.

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Eckner, J.

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

Eliyahu, D.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Guekos, G.

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hänsch, T. W.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Haus, H. A.

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Hayes, C. L.

Hough, J.

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kerr, G. A.

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Koch, C.

C. Koch and H. R. Telle, Opt. Commun. 91, 371 (1992).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Laughman, L. M.

Martelli, F.

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

Mecozzi, A.

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Miller, B. I.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
[CrossRef]

Morton, P. A.

D. J. Derickson, P. A. Morton, J. E. Bowers, and R. L. Thornton, Appl. Phys. Lett. 59, 3372 (1991).
[CrossRef]

Mukai, T.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Newkirk, M. A.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
[CrossRef]

Park, N.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
[CrossRef]

Salvatore, R. A.

Scotti, S.

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

Spano, P.

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

Telle, H. R.

C. Koch and H. R. Telle, Opt. Commun. 91, 371 (1992).
[CrossRef]

Thornton, R. L.

D. J. Derickson, P. A. Morton, J. E. Bowers, and R. L. Thornton, Appl. Phys. Lett. 59, 3372 (1991).
[CrossRef]

Vahala, K. J.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Wynands, R.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Yariv, A.

Zhou, J.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Appl. Phys. Lett. (2)

A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner, and G. Guekos, Appl. Phys. Lett. 68, 2186 (1996).
[CrossRef]

D. J. Derickson, P. A. Morton, J. E. Bowers, and R. L. Thornton, Appl. Phys. Lett. 59, 3372 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, IEEE Photon. Technol. Lett. 6, 50 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

C. Koch and H. R. Telle, Opt. Commun. 91, 371 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the Fourier synthesis: FI's, Faraday isolators; LO, local oscillator. See text for other definitions.

Fig. 2
Fig. 2

Optical spectrum of the SOA output. λ2 and λ3 correspond to Laser 2 and Laser 3, respectively. The anti-Stokes component is shown in the inset at 10× vertical magnification.

Fig. 3
Fig. 3

(a) Optical spectrum of the synthesized pulse train. λ1, λ2, and λ3 correspond to Lasers 1, 2, and 3, respectively. (b) Temporal waveform of the synthesized pulse train. Dashed curve, calculated waveform; solid curve, experimental result.

Fig. 4
Fig. 4

Temporal waveforms of the synthesized pulse trains with various phase differences: (a) Δϕ=0°, (b) Δϕ=100°, (c) Δϕ=180°. Δϕ corresponds to the phase difference between Laser 1 and the anti-Stokes wave.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ei=expjωit+jϕi,
It=3I0+4I0cosΔϕ/2cosΩt+δt+2I0cos2 Ωt+δt,

Metrics