Abstract

In recent years widely tunable terahertz- (THz-) wave generation from LiNbO3 optical parametric oscillators (OPO's) has been successfully demonstrated by use of the prism output-coupler method. However, there remains a problem of large absorption loss for generated terahertz waves inside the crystal, so we investigated the cryogenic characteristics of the OPO. We achieved 125-times-higher THz-wave output and 32% reduction of the generation threshold by cooling the crystal to 78  K. This scheme also provides direct loss measurement at THz frequency, and we found that the THz-wave enhancement mechanism is improvement of the gain as well as the reduction of the absorption coefficient.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
    [CrossRef]
  2. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. Sel. Topics Quantum Electron. 2, 679 (1996).
    [CrossRef]
  3. Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
    [CrossRef]
  4. H. Ito, K. Kawase, and J. Shikata, Inst. Electron. Inf. Commun. Eng. E81-C, 264 (1998).
  5. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).
    [CrossRef]
  6. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
    [CrossRef]
  7. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
    [CrossRef]
  8. D. R. Bosomworth, Appl. Phys. Lett. 9, 330 (1966).
    [CrossRef]
  9. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  10. W. D. Johnston and I. P. Kaminow, Phys. Rev. 168, 1045 (1968).
    [CrossRef]
  11. S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” (Stanford University, Stanford, Calif., 1970).
  12. C. H. Henry and C. G. B. Garrett, Phys. Rev. 171, 1058 (1968).
    [CrossRef]
  13. K. Sakai, T. Fukui, Y. Tsunawaki, and H. Yoshinaga, Jpn. J. Appl. Phys. 8, 1046 (1969).
    [CrossRef]
  14. G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]
  15. K. Kawase and H. Ito, Nonlinear Opt. 7, 225 (1994).
  16. Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
    [CrossRef]

1998 (2)

H. Ito, K. Kawase, and J. Shikata, Inst. Electron. Inf. Commun. Eng. E81-C, 264 (1998).

Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
[CrossRef]

1997 (1)

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).
[CrossRef]

1996 (3)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. Sel. Topics Quantum Electron. 2, 679 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

1994 (1)

K. Kawase and H. Ito, Nonlinear Opt. 7, 225 (1994).

1984 (2)

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

1969 (1)

K. Sakai, T. Fukui, Y. Tsunawaki, and H. Yoshinaga, Jpn. J. Appl. Phys. 8, 1046 (1969).
[CrossRef]

1968 (2)

W. D. Johnston and I. P. Kaminow, Phys. Rev. 168, 1045 (1968).
[CrossRef]

C. H. Henry and C. G. B. Garrett, Phys. Rev. 171, 1058 (1968).
[CrossRef]

1966 (1)

D. R. Bosomworth, Appl. Phys. Lett. 9, 330 (1966).
[CrossRef]

Auston, D. H.

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Bosomworth, D. R.

D. R. Bosomworth, Appl. Phys. Lett. 9, 330 (1966).
[CrossRef]

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Ding, Y. J.

Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

Fukui, T.

K. Sakai, T. Fukui, Y. Tsunawaki, and H. Yoshinaga, Jpn. J. Appl. Phys. 8, 1046 (1969).
[CrossRef]

Garrett, C. G. B.

C. H. Henry and C. G. B. Garrett, Phys. Rev. 171, 1058 (1968).
[CrossRef]

Henry, C. H.

C. H. Henry and C. G. B. Garrett, Phys. Rev. 171, 1058 (1968).
[CrossRef]

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Ito, H.

H. Ito, K. Kawase, and J. Shikata, Inst. Electron. Inf. Commun. Eng. E81-C, 264 (1998).

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

K. Kawase and H. Ito, Nonlinear Opt. 7, 225 (1994).

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. Sel. Topics Quantum Electron. 2, 679 (1996).
[CrossRef]

Johnston, W. D.

W. D. Johnston and I. P. Kaminow, Phys. Rev. 168, 1045 (1968).
[CrossRef]

Kaminow, I. P.

W. D. Johnston and I. P. Kaminow, Phys. Rev. 168, 1045 (1968).
[CrossRef]

Kawase, K.

H. Ito, K. Kawase, and J. Shikata, Inst. Electron. Inf. Commun. Eng. E81-C, 264 (1998).

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

K. Kawase and H. Ito, Nonlinear Opt. 7, 225 (1994).

Khurgin, J. B.

Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. Sel. Topics Quantum Electron. 2, 679 (1996).
[CrossRef]

Nakamura, K.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. Sel. Topics Quantum Electron. 2, 679 (1996).
[CrossRef]

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

Sakai, K.

K. Sakai, T. Fukui, Y. Tsunawaki, and H. Yoshinaga, Jpn. J. Appl. Phys. 8, 1046 (1969).
[CrossRef]

Sato, M.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Shikata, J.

H. Ito, K. Kawase, and J. Shikata, Inst. Electron. Inf. Commun. Eng. E81-C, 264 (1998).

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Sussman, S. S.

S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” (Stanford University, Stanford, Calif., 1970).

Taniuchi, T.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

Tsunawaki, Y.

K. Sakai, T. Fukui, Y. Tsunawaki, and H. Yoshinaga, Jpn. J. Appl. Phys. 8, 1046 (1969).
[CrossRef]

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Yoshinaga, H.

K. Sakai, T. Fukui, Y. Tsunawaki, and H. Yoshinaga, Jpn. J. Appl. Phys. 8, 1046 (1969).
[CrossRef]

Zhang, X.-C.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Appl. Phys. Lett. (6)

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).
[CrossRef]

D. R. Bosomworth, Appl. Phys. Lett. 9, 330 (1966).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. Sel. Topics Quantum Electron. 2, 679 (1996).
[CrossRef]

Inst. Electron. Inf. Commun. Eng. (1)

H. Ito, K. Kawase, and J. Shikata, Inst. Electron. Inf. Commun. Eng. E81-C, 264 (1998).

Jpn. J. Appl. Phys. (1)

K. Sakai, T. Fukui, Y. Tsunawaki, and H. Yoshinaga, Jpn. J. Appl. Phys. 8, 1046 (1969).
[CrossRef]

Nonlinear Opt. (1)

K. Kawase and H. Ito, Nonlinear Opt. 7, 225 (1994).

Opt. Commun. (1)

Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).
[CrossRef]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Phys. Rev. (2)

W. D. Johnston and I. P. Kaminow, Phys. Rev. 168, 1045 (1968).
[CrossRef]

C. H. Henry and C. G. B. Garrett, Phys. Rev. 171, 1058 (1968).
[CrossRef]

Other (2)

S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” (Stanford University, Stanford, Calif., 1970).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated parametric gain at 300 and 80  K with variation of pump intensity, Ip. The pump wavelength, λp, is fixed at 1.064 μm. The enhancement of the gain at lower temperature is due mainly to the reduction of the absorption coefficient in the THz region.

Fig. 2
Fig. 2

Schematic diagram of the experimental apparatus. A Si prism is used as an output coupler for the THz wave, and the output is detected by a 4-K Si bolometer. Cooling the crystal to liquid-nitrogen temperature is possible with a Dewar. The phase-matching condition among the pump, the idler, and the THz waves is shown at the bottom. See text for definitions.

Fig. 3
Fig. 3

Temperature dependence of the variation of the THz-wave output with input pump energy. The output is enhanced by 125 times and the threshold is reduced by 32% at 78  K compared with the values obtained at room temperature.

Fig. 4
Fig. 4

Absorption coefficient in the 1–2-THz region at 296 and 78  K, measured by use of a widely tunable coherent THz-wave source. The solid (78 K) and the dashed (300 K) theoretical curves were calculated from the A1-symmetry polariton wave vector.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

gT=gicosϕ=αT21+16cosϕg0αT21/2-1,
g0=πωTωiIp2c3nTninp1/2dE+jSjω02dQjω0j2-ωT2,
αT=2Im kT=2ωTcImϵ+jSjω0j2ω0j2-ωT2-iωTΓj1/2,

Metrics