Abstract

We report a Kerr-lens mode-locked Cr:forsterite laser operated with negative nonlinear phase shift. The nonlinear phase shift is induced by the cascade χ(2):χ(2) process in a lithium triborate crystal. Employing the cascade process at large phase mismatch produces a nearly linear frequency chirp. Transform-limited pulses as short as 60 fs are generated with positive cavity dispersion.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992); F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
    [CrossRef]
  3. H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
    [CrossRef] [PubMed]
  4. R. DeSalvo, D. J. Hagan, M. Shiek-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, Opt. Lett. 17, 28 (1992).
    [CrossRef] [PubMed]
  5. K. A. Stankov, Opt. Lett. 14, 359 (1989), and references therein; M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum Electron. 34, 61 (1998), and references therein.
    [CrossRef] [PubMed]
  6. F. Hache, A. Zeboulon, G. Gallot, and G. M. Gale, Opt. Lett. 20, 1556 (1995).
    [CrossRef] [PubMed]
  7. O. Albert and J. Etchepare, Opt. Commun. 154, 345 (1998).
    [CrossRef]
  8. X. Liu, L. Qian, and F. W. Wise, Opt. Commun. 144, 265 (1997).
    [CrossRef]
  9. I. Kang, T. D. Krauss, and F. W. Wise, Opt. Lett. 22, 1077 (1997).
    [CrossRef] [PubMed]
  10. V. Yanovsky, Y. Pang, F. Wise, and B. Minkov, Opt. Lett. 18, 1541 (1993).
    [CrossRef]
  11. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, Opt. Lett. 22, 1006 (1997).
    [CrossRef] [PubMed]
  12. B. Proctor, E. Westwig, and F. Wise, Opt. Lett. 18, 1654 (1993).
    [CrossRef] [PubMed]

1998

O. Albert and J. Etchepare, Opt. Commun. 154, 345 (1998).
[CrossRef]

1997

1995

1993

1992

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992); F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[CrossRef]

R. DeSalvo, D. J. Hagan, M. Shiek-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, Opt. Lett. 17, 28 (1992).
[CrossRef] [PubMed]

1991

1990

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

1989

Albert, O.

O. Albert and J. Etchepare, Opt. Commun. 154, 345 (1998).
[CrossRef]

Bakker, H. J.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

DeSalvo, R.

Etchepare, J.

O. Albert and J. Etchepare, Opt. Commun. 154, 345 (1998).
[CrossRef]

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992); F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[CrossRef]

Gale, G. M.

Gallot, G.

Hache, F.

Hagan, D. J.

Haus, H. A.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992); F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[CrossRef]

Ippen, E. P.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992); F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[CrossRef]

Itatani, T.

Kang, I.

Kean, P. N.

Kobayashi, K.

Krauss, T. D.

Kuipers, L.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Lagendijk, A.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Liu, X.

X. Liu, L. Qian, and F. W. Wise, Opt. Commun. 144, 265 (1997).
[CrossRef]

Minkov, B.

Nakagawa, T.

Pang, Y.

Planken, P. C. M.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Proctor, B.

Qian, L.

X. Liu, L. Qian, and F. W. Wise, Opt. Commun. 144, 265 (1997).
[CrossRef]

Shiek-Bahae, M.

Sibbett, W.

Spence, D. E.

Stankov, K. A.

Stegeman, G.

Sugaya, T.

Torizuka, K.

Van Stryland, E. W.

Vanherzeele, H.

Westwig, E.

Wise, F.

Wise, F. W.

X. Liu, L. Qian, and F. W. Wise, Opt. Commun. 144, 265 (1997).
[CrossRef]

I. Kang, T. D. Krauss, and F. W. Wise, Opt. Lett. 22, 1077 (1997).
[CrossRef] [PubMed]

Yanovsky, V.

Zeboulon, A.

Zhang, Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagrams of femtosecond KLM lasers: (a) traditional approach, (b) approach described here.

Fig. 2
Fig. 2

Frequency sweeps generated in the cascade process with GVM equal to the pulse duration and ΔkL = 2π and ΔkL = 11π. The magnitude of the phase shift produced with ΔkL = 2π is ~2.5 times as large as that produced with ΔkL = 11π. The fine solid curve corresponds to an instantaneous nonlinear index of refraction.

Fig. 3
Fig. 3

Schematic of the laser: dashed lines, beam path with prisms in the cavity; solid lines, paths without prisms. SESAM, semiconductor saturable absorber mirror.

Fig. 4
Fig. 4

Pulse duration plotted versus cavity dispersion. Open symbols, ordinary KLM; filled symbols, KLM with the cascade nonlinearity. The curves are to guide the eye, and dashed portions of the curves indicate unstable regions.

Fig. 5
Fig. 5

Autocorrelation and power spectrum (inset) of pulses generated with prisms removed from the laser. The time–bandwidth product is τΔv = 0.4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ NL - Γ 2 L 2 / Δ k L ,
Δ Φ NL ( cascade ) = Δ Φ NL ( total ) - Δ Φ NL ( Cr : forsterite , Kerr ) - Δ Φ NL ( LBO , Kerr ) - 0.4 - 0.4 - 0.6 - 1.4 rad .

Metrics