Abstract

A superregenerative receiver scheme developed for radio communications is translated to the scope of optical communications. Starting from application of the quasi-deterministic theory to the single-mode Langevin rate equations, closed expressions for basic parameters and features, such as bit-error rate and frequency response, are obtained. A comparison of superregenerative receivers with well-established optical receivers shows that improvements in direct-detection receiver sensitivities of more than 10  dB can be obtained; this places superregenerative receiver sensitivities closer to the shot limit. Moreover, the intrinsic frequency selectivity of the superregenerative scheme makes it especially suitable for wavelength-division multiplexed systems. Finally, appropriate devices for implementation of this receiver are suggested.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Torrent, S. Balle, M. San Miguel, and J. M. Sancho, Phys. Rev. A 47, 3390 (1993).
    [CrossRef] [PubMed]
  2. G. G. Macfarlane and J. R. Whitehead, Proc. Inst. Electr. Eng. 95, 134 (1948).
  3. G. Vemuri and R. Roy, Phys. Rev. A 39, 2529 (1989).
  4. G. Vemuri and R. Roy, Opt. Commun. 77, 318 (1990).
    [CrossRef]
  5. M. C. España-Boquera and A. Puerta-Notario, Electron. Lett. 32, 818 (1996).
    [CrossRef]
  6. A. Mecozzi, P. Spano, and A. Sapia, Opt. Lett. 15, 1067 (1990).
    [CrossRef] [PubMed]
  7. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
    [CrossRef]
  8. Y. Suematsu, K. Iga, and S. Arai, Proc. IEEE 80, 383 (1992).
    [CrossRef]
  9. S. E. Miller, IEEE J. Quantum Electron. QE-22, 1071 (1987).
    [CrossRef]

1996

M. C. España-Boquera and A. Puerta-Notario, Electron. Lett. 32, 818 (1996).
[CrossRef]

1993

M. C. Torrent, S. Balle, M. San Miguel, and J. M. Sancho, Phys. Rev. A 47, 3390 (1993).
[CrossRef] [PubMed]

1992

Y. Suematsu, K. Iga, and S. Arai, Proc. IEEE 80, 383 (1992).
[CrossRef]

1990

1989

G. Vemuri and R. Roy, Phys. Rev. A 39, 2529 (1989).

1987

S. E. Miller, IEEE J. Quantum Electron. QE-22, 1071 (1987).
[CrossRef]

1948

G. G. Macfarlane and J. R. Whitehead, Proc. Inst. Electr. Eng. 95, 134 (1948).

Arai, S.

Y. Suematsu, K. Iga, and S. Arai, Proc. IEEE 80, 383 (1992).
[CrossRef]

Balle, S.

M. C. Torrent, S. Balle, M. San Miguel, and J. M. Sancho, Phys. Rev. A 47, 3390 (1993).
[CrossRef] [PubMed]

España-Boquera, M. C.

M. C. España-Boquera and A. Puerta-Notario, Electron. Lett. 32, 818 (1996).
[CrossRef]

Iga, K.

Y. Suematsu, K. Iga, and S. Arai, Proc. IEEE 80, 383 (1992).
[CrossRef]

Macfarlane, G. G.

G. G. Macfarlane and J. R. Whitehead, Proc. Inst. Electr. Eng. 95, 134 (1948).

Mecozzi, A.

Miller, S. E.

S. E. Miller, IEEE J. Quantum Electron. QE-22, 1071 (1987).
[CrossRef]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
[CrossRef]

Puerta-Notario, A.

M. C. España-Boquera and A. Puerta-Notario, Electron. Lett. 32, 818 (1996).
[CrossRef]

Roy, R.

G. Vemuri and R. Roy, Opt. Commun. 77, 318 (1990).
[CrossRef]

G. Vemuri and R. Roy, Phys. Rev. A 39, 2529 (1989).

San Miguel, M.

M. C. Torrent, S. Balle, M. San Miguel, and J. M. Sancho, Phys. Rev. A 47, 3390 (1993).
[CrossRef] [PubMed]

Sancho, J. M.

M. C. Torrent, S. Balle, M. San Miguel, and J. M. Sancho, Phys. Rev. A 47, 3390 (1993).
[CrossRef] [PubMed]

Sapia, A.

Spano, P.

Suematsu, Y.

Y. Suematsu, K. Iga, and S. Arai, Proc. IEEE 80, 383 (1992).
[CrossRef]

Torrent, M. C.

M. C. Torrent, S. Balle, M. San Miguel, and J. M. Sancho, Phys. Rev. A 47, 3390 (1993).
[CrossRef] [PubMed]

Vemuri, G.

G. Vemuri and R. Roy, Opt. Commun. 77, 318 (1990).
[CrossRef]

G. Vemuri and R. Roy, Phys. Rev. A 39, 2529 (1989).

Whitehead, J. R.

G. G. Macfarlane and J. R. Whitehead, Proc. Inst. Electr. Eng. 95, 134 (1948).

Electron. Lett.

M. C. España-Boquera and A. Puerta-Notario, Electron. Lett. 32, 818 (1996).
[CrossRef]

IEEE J. Quantum Electron.

S. E. Miller, IEEE J. Quantum Electron. QE-22, 1071 (1987).
[CrossRef]

Opt. Commun.

G. Vemuri and R. Roy, Opt. Commun. 77, 318 (1990).
[CrossRef]

Opt. Lett.

Phys. Rev. A

G. Vemuri and R. Roy, Phys. Rev. A 39, 2529 (1989).

M. C. Torrent, S. Balle, M. San Miguel, and J. M. Sancho, Phys. Rev. A 47, 3390 (1993).
[CrossRef] [PubMed]

Proc. IEEE

Y. Suematsu, K. Iga, and S. Arai, Proc. IEEE 80, 383 (1992).
[CrossRef]

Proc. Inst. Electr. Eng.

G. G. Macfarlane and J. R. Whitehead, Proc. Inst. Electr. Eng. 95, 134 (1948).

Other

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Detection process for a linear-mode superregenerative semiconductor laser receiver: dotted curve, input binary sequence; solid curve, optical pulses emitted from the detector laser; dashed curve, output from the DD receiver (all normalized to unity).

Fig. 2
Fig. 2

Receiver sensitivity versus driving current for a BER of 10-9: dashed curve, common laser diode; solid curve, Q-enhanced laser diode.

Tables (1)

Tables Icon

Table 1 Symbols for the Parameters Used in This Study

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

pSitu=1/Stuexp-Situ+Situ-Stu/StuI0(2{Situ[Situ-Stu}1/2/Stu]),
Qmonopulse=Situ-StuStu1/2[(Stu+2Situ-Stu1/2+Stu1/2],
Situ-Stufd2kiny2Piny4πτeΓG0nuION/Iu-1×11+α2Hω,
StuΓβBnu22τeπ/ΓG0nuION/Iu-11/2.
Hω=exp-2Δω2τe/ΓG0nuION/Iu-11+α2,
Tperτelnnmin+ION-IbiasτeexptON/τeeV-IONτeeV/nmin-IbiasτeeV.

Metrics