Abstract

We report, for the first time to our knowledge, high-power femtosecond traveling-wave optical parametric amplification by use of periodically poled KTiOPO4. With a single pass through a 4-mm-long sample of 1.23-mm thickness we achieved 40% internal conversion efficiency and 5 µJ of single-pulse idler energy near 3.8 µm, using only 75 µJ of energy from the output of a conventional 1-kHz Ti:sapphire regenerative amplifier. The 210-fs-long idler pulses were almost transform limited. We discuss the specific problems encountered in high-power parametric conversion, such as unwanted quasi-phase-matched upconversion processes for polarization configurations that utilize the largest d33 nonlinear coefficient and the related formation of color centers (gray tracking) in KTiOPO4.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, Opt. Lett. 22, 1397 (1997).
    [CrossRef]
  2. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22, 1458 (1997).
    [CrossRef]
  3. Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
    [CrossRef]
  4. A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, Opt. Lett. 22, 105 (1997).
    [CrossRef] [PubMed]
  5. V. Petrov, F. Rotermund, and F. Noack, Appl. Opt. 37, 8504 (1998).
    [CrossRef]
  6. V. Petrov and F. Noack, J. Opt. Soc. Am. B 12, 2214 (1995).
    [CrossRef]
  7. V. Petrov and F. Noack, Opt. Lett. 21, 1576 (1996).
    [CrossRef] [PubMed]
  8. K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
    [CrossRef]
  9. H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
    [CrossRef]
  10. S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, Opt. Lett. 23, 1883 (1998).
    [CrossRef]
  11. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, Appl. Opt. 26, 2390 (1987).
    [CrossRef] [PubMed]
  12. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).
    [CrossRef]
  13. V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, Quantum Electron. 27, 356 (1997).
    [CrossRef]
  14. B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
    [CrossRef]

1999 (2)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).
[CrossRef]

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

1998 (3)

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, Opt. Lett. 23, 1883 (1998).
[CrossRef]

Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, Appl. Opt. 37, 8504 (1998).
[CrossRef]

1997 (5)

1996 (1)

1995 (1)

1991 (1)

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

1987 (1)

Arbore, M. A.

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).
[CrossRef]

Boulanger, B.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Burr, K. C.

Byer, R. L.

Ebrahimzadeh, M.

Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
[CrossRef]

D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, Opt. Lett. 22, 1397 (1997).
[CrossRef]

Eckardt, R. C.

Fan, T. Y.

Fan, Y. X.

Feigelson, R. S.

Fejer, M. M.

Fermann, M. E.

Feve, J. P.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).
[CrossRef]

Galvanauskas, A.

Harter, D.

Hu, B. Q.

Huang, C. E.

Jundt, D. H.

Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
[CrossRef]

Karlsson, H.

Kato, K.

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

Laurell, F.

Loza-Alvarez, P.

Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
[CrossRef]

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Maslov, V. A.

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, Quantum Electron. 27, 356 (1997).
[CrossRef]

Menaert, B.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Mikhailov, V. A.

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, Quantum Electron. 27, 356 (1997).
[CrossRef]

Noack, F.

Pasiskevicius, V.

Penman, Z.

Penman, Z. E.

Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
[CrossRef]

Petrov, V.

Reid, D. T.

Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
[CrossRef]

D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, Opt. Lett. 22, 1397 (1997).
[CrossRef]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).
[CrossRef]

Rotermund, F.

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

Shaunin, O. P.

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, Quantum Electron. 27, 356 (1997).
[CrossRef]

Shcherbakov, I. A.

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, Quantum Electron. 27, 356 (1997).
[CrossRef]

Sibbett, W.

Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
[CrossRef]

D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, Opt. Lett. 22, 1397 (1997).
[CrossRef]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).
[CrossRef]

Tang, C. L.

Wang, S.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).
[CrossRef]

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Z. E. Penman, P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, Opt. Commun. 146, 147 (1998).
[CrossRef]

Opt. Lett. (5)

Quantum Electron. (1)

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, Quantum Electron. 27, 356 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) OPA tuning in flux-grown PPKTP at a fixed signal wavelength of 1.064 µm and (b) GVM with vI, vS, and vP denoting the idler, signal, and pump group velocities, respectively. The operating point calculated for the present study is designated by dashed lines.

Fig. 2
Fig. 2

Idler energy obtained with the PPKTP OPA at a fixed signal wavelength for the pump wavelength tuned at room temperature and at 120 °C. In all cases the incident peak on-axis pump intensity is Im=90 GW/cm2, corresponding to 75 µJ of energy and 80-fs duration (FWHM).

Fig. 3
Fig. 3

Cross-correlation function of the idler pulse with a small fraction of the pump pulse at 830 nm: experimental points (filled circles) and Gaussian fit (solid curve). The corresponding idler spectrum is shown in the inset. The crystal temperature is 120 °C, and the other pump pulse parameters are as in Fig. 2.

Metrics