Abstract

We show that a temporal effect that is equivalent to the spatial self-imaging (Talbot) effect applies to the reflection of periodic signals from linearly chirped fiber gratings. The effect can be used for multiplying the repetition frequency of a given periodic pulse train without distorting the individual pulse characteristics. The practical limit on the frequency-multiplication factor depends only on the temporal width of the individual pulse. Thus we demonstrate that a suitable combination of well-known techniques for short-pulse generation, such as pulse mode locking, and the technique proposed here allows us to obtain short-pulse trains with ultrahigh repetition rates (in the terahertz regime). Results from simulations show good agreement with those predicted by theory.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Folk, B. I. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
    [CrossRef]
  2. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  3. K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
    [CrossRef]
  4. J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 55, 373 (1965).
  5. T. Jannson and J. Jannson, J. Opt. Soc. Am. 71, 1373 (1981).
  6. F. Ouellette, Opt. Lett. 12, 847 (1987).
    [CrossRef] [PubMed]
  7. M. A. Muriel, J. Azaña, and A. Carballar, Opt. Lett. 24, 1 (1999).
    [CrossRef]

1999 (1)

1987 (1)

1986 (1)

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

1981 (2)

R. L. Folk, B. I. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

T. Jannson and J. Jannson, J. Opt. Soc. Am. 71, 1373 (1981).

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

1965 (1)

Azaña, J.

Carballar, A.

Folk, R. L.

R. L. Folk, B. I. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Green, B. I.

R. L. Folk, B. I. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Hasegawa, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Jannson, J.

Jannson, T.

Jewell, J. L.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Muriel, M. A.

Ouellette, F.

Shank, C. V.

R. L. Folk, B. I. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Tai, K.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Tomita, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Winthrop, J. T.

Worthington, C. R.

Appl. Phys. Lett. (2)

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

R. L. Folk, B. I. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Block diagram of the proposed technique for increasing the repetition rate of a given pulse train.

Fig. 2
Fig. 2

(a), (b), Reflectivity and reflection group delay, respectively, of the LCFG, both as functions of the optical frequency. The grating provides a linear mean group delay with a slope (dispersion coefficient) of 400 ps2 over a 2-THz bandwidth.

Fig. 3
Fig. 3

(a) Gaussian pulse train incident upon the LCFG. The sequence has a repetition rate of 10 GHz. (b) Pulse train reflected from the LCFG. A simple propagation through the LCFG produces a repetition rate of 250 GHz. The reflected pulses retain the Gaussian shape and temporal width (0.5 ps) of the input pulses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

hdxexp-jπλdx2,
hˆrtexpj12Φ̈t2,
xt,  λd-2πΦ¨.
T2=2πΦ̈/s
T2=m2πΦ¨/s

Metrics