Abstract

We report a practical and efficient all-solid-state laser source operating at 578 nm. The source comprises a diode-pumped Nd:YAG laser gain medium producing fundamental output at 1064 nm, an intracavity LiIO3 Raman-active crystal that generates first-Stokes output at 1155 nm, and an intracavity LiB3O5 frequency-doubling crystal, which frequency doubles the first-Stokes output to 578 nm. Q-switched output with as much as 1.2-W average power has been obtained; conversion efficiencies from the fundamental to the yellow as high as 33% have been obtained.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smity, W. Austin, and R. A. Stolzenberger, Opt. Lett. 20, 1017 (1995).
    [CrossRef]
  2. E. O. Ammann, Appl. Phys. 51, 118 (1980).
  3. H. M. Pask and J. A. Piper, Opt. Commun. 148, 285 (1998).
    [CrossRef]
  4. E. O. Ammann and J. Falk, Appl. Phys. Lett. 22, 662 (1975).
    [CrossRef]
  5. C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
    [CrossRef]
  6. J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 129–135.
  7. G. M. Gualberto and C. A. Arguello, Solid State Commun. 14, 911 (1974).
    [CrossRef]
  8. W. Zinth and W. Kaiser, Opt. Commun. 32, 507 (1980).
    [CrossRef]
  9. Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, IEEE J. Quantum Electron. 25, 208 (1989).
    [CrossRef]
  10. M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1994), Vol. 2, p. 33.50.

1998 (1)

H. M. Pask and J. A. Piper, Opt. Commun. 148, 285 (1998).
[CrossRef]

1997 (1)

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

1995 (1)

1989 (1)

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, IEEE J. Quantum Electron. 25, 208 (1989).
[CrossRef]

1980 (2)

E. O. Ammann, Appl. Phys. 51, 118 (1980).

W. Zinth and W. Kaiser, Opt. Commun. 32, 507 (1980).
[CrossRef]

1975 (1)

E. O. Ammann and J. Falk, Appl. Phys. Lett. 22, 662 (1975).
[CrossRef]

1974 (1)

G. M. Gualberto and C. A. Arguello, Solid State Commun. 14, 911 (1974).
[CrossRef]

Ackerhalt, J. R.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, IEEE J. Quantum Electron. 25, 208 (1989).
[CrossRef]

Ammann, E. O.

E. O. Ammann, Appl. Phys. 51, 118 (1980).

E. O. Ammann and J. Falk, Appl. Phys. Lett. 22, 662 (1975).
[CrossRef]

Arguello, C. A.

G. M. Gualberto and C. A. Arguello, Solid State Commun. 14, 911 (1974).
[CrossRef]

Austin, W.

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 129–135.

Band, Y. B.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, IEEE J. Quantum Electron. 25, 208 (1989).
[CrossRef]

Chyba, T. H.

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

Falk, J.

E. O. Ammann and J. Falk, Appl. Phys. Lett. 22, 662 (1975).
[CrossRef]

Gualberto, G. M.

G. M. Gualberto and C. A. Arguello, Solid State Commun. 14, 911 (1974).
[CrossRef]

He, C.

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

Heller, D. F.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, IEEE J. Quantum Electron. 25, 208 (1989).
[CrossRef]

Kaiser, W.

W. Zinth and W. Kaiser, Opt. Commun. 32, 507 (1980).
[CrossRef]

Krasinski, J. S.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, IEEE J. Quantum Electron. 25, 208 (1989).
[CrossRef]

Murray, J. T.

J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smity, W. Austin, and R. A. Stolzenberger, Opt. Lett. 20, 1017 (1995).
[CrossRef]

J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 129–135.

Pask, H. M.

H. M. Pask and J. A. Piper, Opt. Commun. 148, 285 (1998).
[CrossRef]

Peyghambarian, N.

Piper, J. A.

H. M. Pask and J. A. Piper, Opt. Commun. 148, 285 (1998).
[CrossRef]

Powell, R. C.

J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smity, W. Austin, and R. A. Stolzenberger, Opt. Lett. 20, 1017 (1995).
[CrossRef]

J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 129–135.

Smity, D.

Stolzenberger, R. A.

Zinth, W.

W. Zinth and W. Kaiser, Opt. Commun. 32, 507 (1980).
[CrossRef]

Appl. Phys. (1)

E. O. Ammann, Appl. Phys. 51, 118 (1980).

Appl. Phys. Lett. (1)

E. O. Ammann and J. Falk, Appl. Phys. Lett. 22, 662 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, IEEE J. Quantum Electron. 25, 208 (1989).
[CrossRef]

Opt. Commun. (3)

W. Zinth and W. Kaiser, Opt. Commun. 32, 507 (1980).
[CrossRef]

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

H. M. Pask and J. A. Piper, Opt. Commun. 148, 285 (1998).
[CrossRef]

Opt. Lett. (1)

Solid State Commun. (1)

G. M. Gualberto and C. A. Arguello, Solid State Commun. 14, 911 (1974).
[CrossRef]

Other (2)

M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1994), Vol. 2, p. 33.50.

J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 129–135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the intracavity Raman laser, comprising mirrors M1 and M2, an acousto-optic Q switch (QS), a Brewster-plate polarizer (pol), a diode-pumped Nd:YAG pump module, and an antireflection-coated LiIO3 crystal for SRS. (b) Schematic diagram of the intracavity-doubled Raman laser, comprising an additional mirror (M3) and a LBO crystal for second-harmonic generation.

Fig. 2
Fig. 2

Laser performance at 578 nm as a function of pump diode current, together with the output at 1064 nm (from the standard Nd:YAG laser) and at 1155 nm (from the optimized Raman laser). The laser cavity was optimized for operating at 18 A.

Fig. 3
Fig. 3

Laser performance at 578 nm as a function of pump diode current for three prf’s. The laser cavity was optimized for operating at 25 A.

Metrics