Abstract

A beam-splitting ball lens is introduced as a new integrated optical component for board- and backplane-level optical interconnection applications. The proposed beam-splitting ball lenses can be used in conjunction with polymer fiber image guides to split and combine imaged patterns of two-dimensional array optical data. Power and resolution performance parameters of a packaged system are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, J. Lightwave Technol. 9, 1674 (1991).
    [CrossRef]
  2. D. Zaleta, S. K. Patra, V. H. Ozguz, J. Ma, and S. H. Lee, Appl. Opt. 35, 1317 (1996).
    [CrossRef] [PubMed]
  3. R. K. Kostuk, D. L. Ramsey, and T.-J. Kim, Appl. Opt. 36, 4722 (1997).
    [CrossRef] [PubMed]
  4. J. Ai and Y. Li, Appl. Opt. 38, 6167 (1999).
    [CrossRef]
  5. J. Ai and Y. Li, Appl. Opt. 38, 325 (1999).
    [CrossRef]
  6. Y. Li, T. Wang, H. Kosaka, S. Kawai, and K. Kasahara, Appl. Opt. 35, 6920 (1996).
    [CrossRef] [PubMed]

1999 (2)

1997 (1)

1996 (2)

1991 (1)

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, J. Lightwave Technol. 9, 1674 (1991).
[CrossRef]

Ai, J.

Esener, S. C.

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, J. Lightwave Technol. 9, 1674 (1991).
[CrossRef]

Kasahara, K.

Kawai, S.

Kiamilev, F. E.

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, J. Lightwave Technol. 9, 1674 (1991).
[CrossRef]

Kim, T.-J.

Kosaka, H.

Kostuk, R. K.

Krishnamoorthy, A. V.

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, J. Lightwave Technol. 9, 1674 (1991).
[CrossRef]

Lee, S. H.

D. Zaleta, S. K. Patra, V. H. Ozguz, J. Ma, and S. H. Lee, Appl. Opt. 35, 1317 (1996).
[CrossRef] [PubMed]

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, J. Lightwave Technol. 9, 1674 (1991).
[CrossRef]

Li, Y.

Ma, J.

Marchand, P.

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, J. Lightwave Technol. 9, 1674 (1991).
[CrossRef]

Ozguz, V. H.

Patra, S. K.

Ramsey, D. L.

Wang, T.

Zaleta, D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Image relay–split unit using four lenses and a beam splitter, (b) a BSB lens that performs the same functions as the configuration in (a).

Fig. 2
Fig. 2

Ray-tracing geometry with a ball lens.

Fig. 3
Fig. 3

(a) Normalized lateral image error Δ/f versus normalized output distance X/f. The curves are caustic functions indicating optimum Δ/f. (b) Trade-off relations between excess power loss (in decibels) and the obtainable resolution (in line pairs per millimeter) for N.A.=0.29 and β.

Fig. 4
Fig. 4

Typical power-splitting data of transmitted and reflective beams versus incident beam angle for λ=650 mm. Inset, BSB’s of three sizes.

Fig. 5
Fig. 5

(a) Photograph of a packaged PFIG–BSB-based four-way image splitter–combiner. (b) Typical output image of group 3 elements of a U.S. Air Force resolution test target.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sinα=LcosβsinθR.
sinα=nnLcosβsinθR.
θ=2α-2α-θ.
2Δ=2Xsinθ-sinθcosθcos2θ-cos2β.
2Δβ=0=2Xsinθ-sinθcosθcosβ.
X=L=2f=Rnn-n,

Metrics