Abstract

An optical correlator that can operate with totally incoherent light is presented. Such a correlator can be designed to compensate completely for the inherent chromatic aberrations by resorting to elements with specialized, possibly impractical, dispersion characteristics. Nevertheless, a practical configuration that exploits available achromatic lenses and Fresnel zone plates was designed, built, and tested experimentally. The results reveal that detectable correlation peaks can be obtained with totally incoherent white light. The designs, experimental procedures, and results are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  3. F. T. S. Yu, Optical Information Processing (Wiley, New York, 1983).
  4. F. T. S. Yu, C. Li, and S. Yin, Opt. Eng. 37, 52 (1998).
    [CrossRef]
  5. S. Lowenthal and A. Werts, C. R. Acad. Sci. Ser. B 266, 542 (1968).
  6. A. W. Lohmann and H. W. Werlich, Appl. Opt. 10, 670 (1971).
    [CrossRef] [PubMed]
  7. S. Gorodeisky and A. A. Friesem, Opt. Commun. 100, 421 (1993).
    [CrossRef]
  8. R. H. Katyl, Appl. Opt. 11, 1255 (1972).
    [CrossRef] [PubMed]
  9. S. Leon and E. N. Leith, Appl. Opt. 24, 3638 (1985).
    [CrossRef]
  10. P. Andres, J. Lancis, and W. D. Furlan, Appl. Opt. 31, 4682 (1992).
    [CrossRef]
  11. E. Tajahuerce, J. Lancis, V. Climent, and P. Andres, Opt. Commun. 151, 86 (1998).
    [CrossRef]
  12. J. Van der Gracht and J. N. Mait, Opt. Lett. 17, 1703 (1992).
    [CrossRef] [PubMed]
  13. J. Ding, M. Itoh, and T. Yatagai, Opt. Lett. 20, 2411 (1995).
    [CrossRef]
  14. J. D. Brasher and E. G. Johnson, Opt. Eng. 36, 2409 (1997).
    [CrossRef]
  15. D. Faklis and G. M. Morris, Opt. Eng. 28, 592 (1989).
    [CrossRef]
  16. A. W. Lohmann and D. P. Paris, Appl. Opt. 6, 1739 (1967).
    [CrossRef] [PubMed]

1998 (2)

F. T. S. Yu, C. Li, and S. Yin, Opt. Eng. 37, 52 (1998).
[CrossRef]

E. Tajahuerce, J. Lancis, V. Climent, and P. Andres, Opt. Commun. 151, 86 (1998).
[CrossRef]

1997 (1)

J. D. Brasher and E. G. Johnson, Opt. Eng. 36, 2409 (1997).
[CrossRef]

1995 (1)

1993 (1)

S. Gorodeisky and A. A. Friesem, Opt. Commun. 100, 421 (1993).
[CrossRef]

1992 (2)

1989 (1)

D. Faklis and G. M. Morris, Opt. Eng. 28, 592 (1989).
[CrossRef]

1985 (1)

1972 (1)

1971 (1)

1968 (1)

S. Lowenthal and A. Werts, C. R. Acad. Sci. Ser. B 266, 542 (1968).

1967 (1)

1964 (1)

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).

Andres, P.

E. Tajahuerce, J. Lancis, V. Climent, and P. Andres, Opt. Commun. 151, 86 (1998).
[CrossRef]

P. Andres, J. Lancis, and W. D. Furlan, Appl. Opt. 31, 4682 (1992).
[CrossRef]

Brasher, J. D.

J. D. Brasher and E. G. Johnson, Opt. Eng. 36, 2409 (1997).
[CrossRef]

Climent, V.

E. Tajahuerce, J. Lancis, V. Climent, and P. Andres, Opt. Commun. 151, 86 (1998).
[CrossRef]

Ding, J.

Faklis, D.

D. Faklis and G. M. Morris, Opt. Eng. 28, 592 (1989).
[CrossRef]

Friesem, A. A.

S. Gorodeisky and A. A. Friesem, Opt. Commun. 100, 421 (1993).
[CrossRef]

Furlan, W. D.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Gorodeisky, S.

S. Gorodeisky and A. A. Friesem, Opt. Commun. 100, 421 (1993).
[CrossRef]

Itoh, M.

Johnson, E. G.

J. D. Brasher and E. G. Johnson, Opt. Eng. 36, 2409 (1997).
[CrossRef]

Katyl, R. H.

Lancis, J.

E. Tajahuerce, J. Lancis, V. Climent, and P. Andres, Opt. Commun. 151, 86 (1998).
[CrossRef]

P. Andres, J. Lancis, and W. D. Furlan, Appl. Opt. 31, 4682 (1992).
[CrossRef]

Leith, E. N.

Leon, S.

Li, C.

F. T. S. Yu, C. Li, and S. Yin, Opt. Eng. 37, 52 (1998).
[CrossRef]

Lohmann, A. W.

Lowenthal, S.

S. Lowenthal and A. Werts, C. R. Acad. Sci. Ser. B 266, 542 (1968).

Mait, J. N.

Morris, G. M.

D. Faklis and G. M. Morris, Opt. Eng. 28, 592 (1989).
[CrossRef]

Paris, D. P.

Tajahuerce, E.

E. Tajahuerce, J. Lancis, V. Climent, and P. Andres, Opt. Commun. 151, 86 (1998).
[CrossRef]

Van der Gracht, J.

VanderLugt, A.

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).

Werlich, H. W.

Werts, A.

S. Lowenthal and A. Werts, C. R. Acad. Sci. Ser. B 266, 542 (1968).

Yatagai, T.

Yin, S.

F. T. S. Yu, C. Li, and S. Yin, Opt. Eng. 37, 52 (1998).
[CrossRef]

Yu, F. T. S.

F. T. S. Yu, C. Li, and S. Yin, Opt. Eng. 37, 52 (1998).
[CrossRef]

F. T. S. Yu, Optical Information Processing (Wiley, New York, 1983).

Appl. Opt. (5)

C. R. Acad. Sci. Ser. B (1)

S. Lowenthal and A. Werts, C. R. Acad. Sci. Ser. B 266, 542 (1968).

IEEE Trans. Inf. Theory (1)

A. VanderLugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).

Opt. Commun. (2)

E. Tajahuerce, J. Lancis, V. Climent, and P. Andres, Opt. Commun. 151, 86 (1998).
[CrossRef]

S. Gorodeisky and A. A. Friesem, Opt. Commun. 100, 421 (1993).
[CrossRef]

Opt. Eng. (3)

J. D. Brasher and E. G. Johnson, Opt. Eng. 36, 2409 (1997).
[CrossRef]

D. Faklis and G. M. Morris, Opt. Eng. 28, 592 (1989).
[CrossRef]

F. T. S. Yu, C. Li, and S. Yin, Opt. Eng. 37, 52 (1998).
[CrossRef]

Opt. Lett. (2)

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

F. T. S. Yu, Optical Information Processing (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic correlator configuration for monochromatic, spatially incoherent light.

Fig. 2
Fig. 2

Correlator configuration for totally incoherent white light.

Fig. 3
Fig. 3

Experimental cross-correlation results detected with a CCD camera. (a), (b) Cross correlation of X and O with O and X, respectively. (c), (d) Corresponding line scans across the correlation peaks of (a) and (b). The x and y axes in (c) and (d) are light intensity and position in pixels, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ixi=Ixoh1λux0+xim2dxo,
Ixi=Ixohm1λλu2λxo+xiM2dxo,
Sλ=λu2λm1λ=λu1+2flens-2u1flensfdλ,
1fdλ=1u1+12flens-c2uiflensλ,
Sλ=u1+2flensλ-2u1flensf0λ0λ2.
SλS0-10.039,

Metrics