Abstract

We report what is believed to be the first demonstration of optical fiber gratings written in photonic crystal fibers. The fiber consists of a germanium-doped photosensitive core surrounded by a hexagonal periodic air-hole lattice in a silica matrix. The spectra of these gratings allow for a detailed characterization of the fiber. In particular, the gratings facilitate coupling to higher-order leaky modes. We show that the spatial distribution and the effective index of these modes are determined largely by the design of the lattice and that the grating spectra are unaffected by the refractive index surrounding the fiber. We describe these measurements and corresponding simulations and discuss their implications for the understanding of such air-hole structures.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, J. Lightwave Technol. 17, 1093 (1999).
    [CrossRef]
  3. R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.
  4. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, J. Opt. Soc. Am. A 15, 748 (1998).
    [CrossRef]
  6. BeamPROP 3.0 (Rsoft, New York, 1999).
  7. M. D. Felt and J. A. Fleck, Appl. Opt. 19, 2240 (1980).
    [CrossRef]
  8. D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
    [CrossRef]

1999

1998

1997

1980

Bennet, P. J.

Birks, T. A.

Broderick, N. G. R.

de Sandro, J. P.

DiGiovanni, D. J.

R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.

Erdogan, T.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Felt, M. D.

Fleck, J. A.

Knight, J. C.

Monro, T. M.

Richardson, D. J.

Russell, P. St. J.

Stegall, D. B.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

Wagener, J. L.

R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.

Windeler, R. S.

R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.

Appl. Opt.

IEEE Photon. Technol. Lett.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Lett.

Other

R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Digest of Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.

BeamPROP 3.0 (Rsoft, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of a section of photosensitive PCF and (b) a scanning electron microscope photograph of the cleaved face of the fiber. Pitch Λ=10 µm, hole diameter d=2 µm, Ge core radius ρ=1 µm.

Fig. 2
Fig. 2

(a) Measured transmission spectrum of a FBG written in PCF (solid curve) before and (dashed curve) after application of the external index; the dotted curve shows the computer mode spectrum when beam-propagation modeling was used. (b) Corresponding reflection spectrum.

Fig. 3
Fig. 3

Measured transmission spectrum of a LPG written in PCF (solid curve) before and (dashed curve) after application of the external index.

Fig. 4
Fig. 4

Left, near-field images of light reflected off a FBG when the tunable laser wavelength is tuned to (a) 1549.196 nm, corresponding to the resonance labeled C, and (b) 1546.990 nm, corresponding to the resonance labeled D. Right, corresponding numerically simulated mode profiles.

Tables (1)

Tables Icon

Table 1 Summary of the Effective Indices of the Modes of the PCF

Metrics