Abstract

We report that the rate of excimer-laser-induced densification is a strong function of composition in the binary metal-oxide–silica system. The pulsed excimer-laser-induced densification rate is shown to increase with metal-oxide content. A good correlation was found between the densification rate and the relative softness of the glass, as indicated by the annealing temperature. The densification rate for all the glasses was also found to be a strong function of the excimer-laser wavelength in the order 157 nm>193 nm>248 nm.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Rothschild, D. J. Erlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
    [CrossRef]
  2. R. Schenker, F. Piao, and W. G. Oldham, Proc. SPIE 2726, 698 (1996).
    [CrossRef]
  3. D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward, Opt. Lett. 21, 1960 (1996).
    [CrossRef] [PubMed]
  4. N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward, J. Opt. Soc. Am. B 14, 1606 (1997).
    [CrossRef]
  5. R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
    [CrossRef]
  6. W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
    [CrossRef]
  7. B. W. Smith, Opt. Photon. News 8(3), 23 (1997).
    [CrossRef]
  8. D. C. Allan, C. Smith, and N. F. Borrelli, Proc. SPIE 3578, 16 (1998).
    [CrossRef]
  9. V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, J. Non-Cryst. Solids 244, 159 (1999).
    [CrossRef]

1999

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, J. Non-Cryst. Solids 244, 159 (1999).
[CrossRef]

1998

D. C. Allan, C. Smith, and N. F. Borrelli, Proc. SPIE 3578, 16 (1998).
[CrossRef]

1997

B. W. Smith, Opt. Photon. News 8(3), 23 (1997).
[CrossRef]

R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
[CrossRef]

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward, J. Opt. Soc. Am. B 14, 1606 (1997).
[CrossRef]

1996

1989

M. Rothschild, D. J. Erlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

1968

W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
[CrossRef]

Allan, D. C.

Borrelli, N. F.

Erlich, D. J.

M. Rothschild, D. J. Erlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Grenville, A.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, J. Non-Cryst. Solids 244, 159 (1999).
[CrossRef]

Kampwirth, R.

W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
[CrossRef]

Liberman, V.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, J. Non-Cryst. Solids 244, 159 (1999).
[CrossRef]

Oldham, W. G.

R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
[CrossRef]

R. Schenker, F. Piao, and W. G. Oldham, Proc. SPIE 2726, 698 (1996).
[CrossRef]

Piao, F.

R. Schenker, F. Piao, and W. G. Oldham, Proc. SPIE 2726, 698 (1996).
[CrossRef]

Primak, W.

W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
[CrossRef]

Rothschild, M.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, J. Non-Cryst. Solids 244, 159 (1999).
[CrossRef]

M. Rothschild, D. J. Erlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Schenker, R.

R. Schenker, F. Piao, and W. G. Oldham, Proc. SPIE 2726, 698 (1996).
[CrossRef]

Schenker, R. E.

R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
[CrossRef]

Sedlacek, J. H. C.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, J. Non-Cryst. Solids 244, 159 (1999).
[CrossRef]

Seward, T. P.

Shaver, D. C.

M. Rothschild, D. J. Erlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Smith, B. W.

B. W. Smith, Opt. Photon. News 8(3), 23 (1997).
[CrossRef]

Smith, C.

Uttaro, R. S.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, J. Non-Cryst. Solids 244, 159 (1999).
[CrossRef]

Appl. Phys. Lett.

M. Rothschild, D. J. Erlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

J. Appl. Phys.

R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
[CrossRef]

W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
[CrossRef]

J. Non-Cryst. Solids

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, J. Non-Cryst. Solids 244, 159 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Photon. News

B. W. Smith, Opt. Photon. News 8(3), 23 (1997).
[CrossRef]

Proc. SPIE

D. C. Allan, C. Smith, and N. F. Borrelli, Proc. SPIE 3578, 16 (1998).
[CrossRef]

R. Schenker, F. Piao, and W. G. Oldham, Proc. SPIE 2726, 698 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured vacuum UV transmittance per millimeter versus wavelength. The sample designations A–G appear in Table 1.

Fig. 2
Fig. 2

193-nm excimer-laser-induced Δρ/ρ versus dose (defined as F2N/t) for the glasses studied; ppm, parts in 106. The solid curves are fits by use of Eq. (1), with b=0.53. The sample designations A–G appear in Table 1.

Fig. 3
Fig. 3

Correlation of densification with anneal point for the data shown in Fig. 2. Densification is represented by the value of prefactor a in Eq. (1), with b fixed at 0.53.

Tables (1)

Tables Icon

Table 1 Annealing Temperatures and Prefactors for the Glasses Used in This Study

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δρρ=aF2Nτb.

Metrics