Abstract

Reproducible fluorescence spectra of individual 2- to 5μm-diameter biological aerosol particles excited with a single shot from a Q-switched laser (266 or 351  nm) have been obtained with highly improved signal-to-noise ratios. Critical to the advance are crossed diode-laser trigger beams, which precisely define the sample volume, and a reflecting objective, which minimizes chromatic aberration and has a large N.A.  for collecting fluorescence. Several allergens (red oak, meadow oat pollen, paper mulberry pollen, and puffball spores) have different fluorescence spectra. Bacillus subtilis fluorescence spectrum deteriorates at high 266-nm incident intensity. Dry riboflavin particles illuminated with a 351-nm light exhibit a new 420-nm fluorescence peak that grows nonlinearly with laser pulse energy.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. (to be published).
  2. P. P. Hairston, J. Ho, and F. R. Quant. J. Aerosol Sci. 28, 471 (1997).
    [CrossRef] [PubMed]
  3. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
    [CrossRef]
  4. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, Opt. Lett. 21, 1307 (1996).
    [CrossRef] [PubMed]
  5. R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, Aerosol Sci. Technol. 28, 95 (1998).
    [CrossRef]
  6. The problem of using fluorescence to classify atmospheric bioaerosols is challenging because (1) there are so many possible types of biological aerosol particle, (2) differences between the emission spectra of highly purified bacterial or protein samples may be small (spectra may be dominated by a small number of primary fluorophors, e.g., aromatic amino acids, reduced nicotinamide compounds, and flavins), (3) differences may depend on growth conditions, the atmospheric environment (temperature, humidity, sunlight, etc.), and other factors, and (4) naturally occurring biological aerosols may be mixtures of several types of particle and compound.
  7. S. Holler, Y. L. Pan, R. K. Chang, S. C. Hill, D. B. Hillis, and J. R. Bottiger, Opt. Lett. 23, 1489 (1998).
    [CrossRef]
  8. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, Appl. Opt. 36, 958 (1997).
    [CrossRef] [PubMed]
  9. M. Seaver, D. C. Roselle, J. G. Pinto, and J. D. Eversole, Appl. Opt. 37, 5344 (1998).
    [CrossRef]

1998 (3)

1997 (2)

1996 (1)

1995 (1)

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

Bottiger, J. R.

Bronk, B. V.

Bruno, J. G.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. (to be published).

Chang, R. K.

Chen, G.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, Aerosol Sci. Technol. 28, 95 (1998).
[CrossRef]

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, Opt. Lett. 21, 1307 (1996).
[CrossRef] [PubMed]

Copeland, R. A.

Eversole, J. D.

M. Seaver, D. C. Roselle, J. G. Pinto, and J. D. Eversole, Appl. Opt. 37, 5344 (1998).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. (to be published).

Faris, G. W.

Fernadez, G. I.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

Hairston, P. P.

P. P. Hairston, J. Ho, and F. R. Quant. J. Aerosol Sci. 28, 471 (1997).
[CrossRef] [PubMed]

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. (to be published).

Hill, S. C.

S. Holler, Y. L. Pan, R. K. Chang, S. C. Hill, D. B. Hillis, and J. R. Bottiger, Opt. Lett. 23, 1489 (1998).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, Aerosol Sci. Technol. 28, 95 (1998).
[CrossRef]

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, Opt. Lett. 21, 1307 (1996).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

Hillis, D. B.

Ho, J.

P. P. Hairston, J. Ho, and F. R. Quant. J. Aerosol Sci. 28, 471 (1997).
[CrossRef] [PubMed]

Holler, S.

Mayo, M. W.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

Mortelmans, K.

Nachman, P.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, Aerosol Sci. Technol. 28, 95 (1998).
[CrossRef]

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, Opt. Lett. 21, 1307 (1996).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

Pan, Y. L.

Pendleton, J. D.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

Pinnick, R. G.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, Aerosol Sci. Technol. 28, 95 (1998).
[CrossRef]

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, Opt. Lett. 21, 1307 (1996).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

Pinto, J. G.

Quant, F. R.

P. P. Hairston, J. Ho, and F. R. Quant. J. Aerosol Sci. 28, 471 (1997).
[CrossRef] [PubMed]

Roselle, D. C.

M. Seaver, D. C. Roselle, J. G. Pinto, and J. D. Eversole, Appl. Opt. 37, 5344 (1998).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. (to be published).

Seaver, M.

M. Seaver, D. C. Roselle, J. G. Pinto, and J. D. Eversole, Appl. Opt. 37, 5344 (1998).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. (to be published).

Videen, G.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, Aerosol Sci. Technol. 28, 95 (1998).
[CrossRef]

Aerosol Sci. Technol. (2)

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. I. Fernadez, M. W. Mayo, and J. G. Bruno, Aerosol Sci. Technol. 23, 653 (1995).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, Aerosol Sci. Technol. 28, 95 (1998).
[CrossRef]

Appl. Opt. (2)

J. Aerosol Sci. (1)

P. P. Hairston, J. Ho, and F. R. Quant. J. Aerosol Sci. 28, 471 (1997).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. (to be published).

The problem of using fluorescence to classify atmospheric bioaerosols is challenging because (1) there are so many possible types of biological aerosol particle, (2) differences between the emission spectra of highly purified bacterial or protein samples may be small (spectra may be dominated by a small number of primary fluorophors, e.g., aromatic amino acids, reduced nicotinamide compounds, and flavins), (3) differences may depend on growth conditions, the atmospheric environment (temperature, humidity, sunlight, etc.), and other factors, and (4) naturally occurring biological aerosols may be mixtures of several types of particle and compound.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used for detecting single-shot laser-induced fluorescence spectra from individual micrometer-sized aerosol particles. There are two criti-cal improvements: two cw diode laser beams (at 635 and 670  nm), which define the sample volume, and a high-N.A.  reflecting objective, which avoids chromatic aberration.

Fig. 2
Fig. 2

Single-shot fluorescence spectra of four allergens, excited by a UV laser.

Fig. 3
Fig. 3

Fluorescence spectra of ten consecutive single shots of a 266-nm laser beam on dried vegetative B.  subtilis aggregates (all 5 μm in diameter).

Fig. 4
Fig. 4

(a) Fluorescence spectrum of B.  subtilis var.  niger spore aggregate irradiated by a single-shot-266-nm laser with three pulse energies. (b) Fluorescence spectra of dried riboflavin particles irradiated at three different pulse energies of a 351-nm laser. The 560-nm peak increased linearly with input-pulse energy, whereas the 420-nm peak increased nonlinearly with input-pulse energy.

Metrics