Abstract

Near-field optical microscopy has been used to study photorefractive surface waves in BaTiO3. The field distribution of the photorefractive surface wave near the crystal–air interface has been measured and compared with theory. Experimental data indicate that a micrometer-wide transition layer with dielectric and photorefractive properties that are different from the properties of the bulk BaTiO3 exists near the interface.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Garcia Quirino, J. J. Sánchez-Mondragón, and S. Stepanov, Phys. Rev. A 51, 1571 (1995).
    [CrossRef] [PubMed]
  2. M. Cronin-Golomb, Opt. Lett. 20, 2075 (1995).
    [CrossRef] [PubMed]
  3. B. Crosignani, P. Di Porto, M. Segev, G. Salamo, and A. Yariv, Riv. Nuovo Cimento 21, 1 (1998).
    [CrossRef]
  4. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. (to be published).?Paper available at http://xxx.lanl.gov/abs/cond-mat/9906252 .
  5. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, Phys. Rev. Lett. 77, 3877 (1996).
    [CrossRef] [PubMed]
  6. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).
    [CrossRef]

1998 (1)

B. Crosignani, P. Di Porto, M. Segev, G. Salamo, and A. Yariv, Riv. Nuovo Cimento 21, 1 (1998).
[CrossRef]

1996 (1)

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, Phys. Rev. Lett. 77, 3877 (1996).
[CrossRef] [PubMed]

1995 (2)

G. S. Garcia Quirino, J. J. Sánchez-Mondragón, and S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[CrossRef] [PubMed]

M. Cronin-Golomb, Opt. Lett. 20, 2075 (1995).
[CrossRef] [PubMed]

Cronin-Golomb, M.

Crosignani, B.

B. Crosignani, P. Di Porto, M. Segev, G. Salamo, and A. Yariv, Riv. Nuovo Cimento 21, 1 (1998).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, Phys. Rev. Lett. 77, 3877 (1996).
[CrossRef] [PubMed]

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. (to be published).?Paper available at http://xxx.lanl.gov/abs/cond-mat/9906252 .

Di Porto, P.

B. Crosignani, P. Di Porto, M. Segev, G. Salamo, and A. Yariv, Riv. Nuovo Cimento 21, 1 (1998).
[CrossRef]

Garcia Quirino, G. S.

G. S. Garcia Quirino, J. J. Sánchez-Mondragón, and S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[CrossRef] [PubMed]

Khomenko, A. V.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).
[CrossRef]

Lee, C. H.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. (to be published).?Paper available at http://xxx.lanl.gov/abs/cond-mat/9906252 .

Mazzoni, D. L.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, Phys. Rev. Lett. 77, 3877 (1996).
[CrossRef] [PubMed]

Petrov, M. P.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).
[CrossRef]

Salamo, G.

B. Crosignani, P. Di Porto, M. Segev, G. Salamo, and A. Yariv, Riv. Nuovo Cimento 21, 1 (1998).
[CrossRef]

Sánchez-Mondragón, J. J.

G. S. Garcia Quirino, J. J. Sánchez-Mondragón, and S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[CrossRef] [PubMed]

Segev, M.

B. Crosignani, P. Di Porto, M. Segev, G. Salamo, and A. Yariv, Riv. Nuovo Cimento 21, 1 (1998).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, Phys. Rev. Lett. 77, 3877 (1996).
[CrossRef] [PubMed]

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. (to be published).?Paper available at http://xxx.lanl.gov/abs/cond-mat/9906252 .

Stepanov, S.

G. S. Garcia Quirino, J. J. Sánchez-Mondragón, and S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[CrossRef] [PubMed]

Stepanov, S. I.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).
[CrossRef]

Yariv, A.

B. Crosignani, P. Di Porto, M. Segev, G. Salamo, and A. Yariv, Riv. Nuovo Cimento 21, 1 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

G. S. Garcia Quirino, J. J. Sánchez-Mondragón, and S. Stepanov, Phys. Rev. A 51, 1571 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, Phys. Rev. Lett. 77, 3877 (1996).
[CrossRef] [PubMed]

Riv. Nuovo Cimento (1)

B. Crosignani, P. Di Porto, M. Segev, G. Salamo, and A. Yariv, Riv. Nuovo Cimento 21, 1 (1998).
[CrossRef]

Other (2)

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. (to be published).?Paper available at http://xxx.lanl.gov/abs/cond-mat/9906252 .

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic view of our experimental geometry: NSOM, near-field scanning optical microscopy.

Fig. 2
Fig. 2

Comparison of measured photorefractive SEW field distribution near the edge of the exit face of the crystal with theory. The position of the edge is determined from the topographical data and is marked by an arrow. The flat part of the topographical data (at distances larger than 8 µm) corresponds to feedback saturation when the tip of the microscope falls off the edge of the crystal.

Fig. 3
Fig. 3

(a) Topography and (b) near-field optical image of photorefractive SEW propagation along the top face of the crystal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d2/dz2+k02-k2+k02δz/Ez=0,
Esc=-kBT/edIz/dz/Iz,
δz=2n4rkBT/edEz/dz/Ez,
d2/dz2/k02+2γd/dz/k0-2k-k0/k0Ez=0,
Ez=exp-γk0zcos2k-k0k01/2z+ϕ.

Metrics