Abstract

We report difference frequency generation–based wavelength converters with multiple phase-matching wavelengths that use engineered quasi-phase-matching structures in LiNbO3 waveguides. Multiple-channel wavelength conversion is demonstrated within the 1.5µm band and between the 1.3- and 1.5µm bands. With simultaneous use of M pump wavelengths, these devices can also be used to perform wavelength broadcasting, in which each of N input signals is converted into M output wavelengths.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
    [CrossRef]
  2. U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
    [CrossRef]
  3. S. Kawanishi, IEEE J. Quantum Electron. 34, 2064 (1997).
    [CrossRef]
  4. M. L. Bortz, “Quasi-phasematched optical frequency conversion in lithium niobate waveguides,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1994).
  5. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
    [CrossRef]
  6. C. Q. Xu, H. Okayama, and M. Kawahara, Appl. Phys. Lett. 63, 3559 (1993).
    [CrossRef]
  7. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, Opt. Lett. 23, 1004 (1998).
    [CrossRef]
  8. M. H. Chou, K. R. Parameswaran, M. A. Arbore, J. Hauden, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThZ2.
  9. C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, and M. P. De Micheli, Electron. Lett. 34, 2157 (1998).
    [CrossRef]
  10. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
    [CrossRef]

1999 (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

1998 (4)

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, Opt. Lett. 23, 1004 (1998).
[CrossRef]

C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, and M. P. De Micheli, Electron. Lett. 34, 2157 (1998).
[CrossRef]

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
[CrossRef]

1997 (1)

S. Kawanishi, IEEE J. Quantum Electron. 34, 2064 (1997).
[CrossRef]

1996 (1)

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

1993 (1)

C. Q. Xu, H. Okayama, and M. Kawahara, Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

Arbore, M. A.

G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, Opt. Lett. 23, 1004 (1998).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. A. Arbore, J. Hauden, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThZ2.

Baldi, P.

C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, and M. P. De Micheli, Electron. Lett. 34, 2157 (1998).
[CrossRef]

Bortz, M. L.

M. L. Bortz, “Quasi-phasematched optical frequency conversion in lithium niobate waveguides,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1994).

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, Opt. Lett. 23, 1004 (1998).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. A. Arbore, J. Hauden, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThZ2.

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

De Micheli, M. P.

C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, and M. P. De Micheli, Electron. Lett. 34, 2157 (1998).
[CrossRef]

Dietrich, E.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

Diez, S.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

Ehrke, H. J.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

Feiste, U.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

Fejer, M. M.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, Opt. Lett. 23, 1004 (1998).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. A. Arbore, J. Hauden, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThZ2.

Galvanauskas, A.

Harter, D.

Hauden, J.

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, Opt. Lett. 23, 1004 (1998).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. A. Arbore, J. Hauden, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThZ2.

Imeshev, G.

Kawahara, M.

C. Q. Xu, H. Okayama, and M. Kawahara, Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

Kawanishi, S.

S. Kawanishi, IEEE J. Quantum Electron. 34, 2064 (1997).
[CrossRef]

Ludwig, R.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, and M. Kawahara, Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

Parameswaran, K. R.

M. H. Chou, K. R. Parameswaran, M. A. Arbore, J. Hauden, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThZ2.

Proctor, M.

Razic, Dz.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

Stegeman, G. I.

C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, and M. P. De Micheli, Electron. Lett. 34, 2157 (1998).
[CrossRef]

Trevino-Palacios, C. G.

C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, and M. P. De Micheli, Electron. Lett. 34, 2157 (1998).
[CrossRef]

Weber, H. G.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

Xu, C. Q.

C. Q. Xu, H. Okayama, and M. Kawahara, Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

C. Q. Xu, H. Okayama, and M. Kawahara, Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

Electron. Lett. (2)

C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, and M. P. De Micheli, Electron. Lett. 34, 2157 (1998).
[CrossRef]

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber, Electron. Lett. 34, 2044 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kawanishi, IEEE J. Quantum Electron. 34, 2064 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

J. Lightwave Technol. (1)

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

Opt. Lett. (2)

Other (2)

M. H. Chou, K. R. Parameswaran, M. A. Arbore, J. Hauden, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThZ2.

M. L. Bortz, “Quasi-phasematched optical frequency conversion in lithium niobate waveguides,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Multiple-channel QPM structure formed by superimposition of a phase-reversal grating upon a uniform QPM grating.

Fig. 2
Fig. 2

SHG wavelength-tuning curves for (a) one-channel, (b) two-channel, (c) three-channel, and (d) four-channel devices. The filled circles are measured results, and the solid curves are theoretical fits. The efficiencies are relative to the peak efficiency 500%/W of a one-channel device.

Fig. 3
Fig. 3

Measured multiple-channel wavelength conversion of (a) one-channel, (b) two-channel, (c) three-channel, and (d) four-channel devices. Wavelength conversions of the individual channels were combined to form these plots.

Fig. 4
Fig. 4

Signal bandwidth of each individual channel in the (a) one-channel and (b) two-channel devices. The filled circles are measured results, and the solid curves are theoretical fits.

Fig. 5
Fig. 5

1.51.3µm multiple-channel wavelength conversion of (a) one-channel, (b) two-channel, (c) three-channel, and (d) four-channel devices. These plots were formed in the same way as those in Fig. 3.

Fig. 6
Fig. 6

Bandwidth of each individual channel for a 1.31.5µm device: (a) one-channel device at two different pump wavelengths (717.9 and 718.2 nm), (b) two-channel device at a fixed pump wavelength (718.1 nm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PωoutηnormPωpPωs1L0LΠzexp-jΔβmzdz2,
PoutηnormPsPpn=1,3,52πn2sinc2Δβm+Kn2L+sinc2Δβm-Kn2L.

Metrics