Abstract

Persistent spectral hole burning (PSHB) is demonstrated in the F07D05 optical transition of Eu3+ doped into crystals of BaFCl. For Eu3+ ions at two different lattice sites, persistent holes can be burned at temperatures below 77  K. The characteristics of the hole-burning process suggest that the observed PSHB effect is due to laser-excitation-induced site-to-site conversion. One type of Eu3+ site is converted into another type of defect site. This process is not optically reversible, and holes can be erased only when the temperature increases to 150  K.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole-Burning:?Science and Applications, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.
    [CrossRef]
  2. U. P. Wild, S. Bernet, B. Kohler, and A. Renn, Pure Appl. Chem. 64, 1335 (1992).
    [CrossRef]
  3. R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
    [CrossRef]
  4. T. Schmidt, R. M. Macfarlane, and S. Voelker, Phys. Rev. B 50, 15707 (1994).
    [CrossRef]
  5. Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
    [CrossRef]
  6. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, J. Opt. Soc. Am. B 15, 2700 (1998).
    [CrossRef]
  7. J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978).
  8. M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).
  9. G. K. Liu and J. V. Beitz, Chem. Phys. Lett. 171, 335 (1990).
  10. W. Zhao, Z. F. Song, and M. Z. Su, J. Rare Earths 4, 241 (1992).
  11. R. M. Macfarlane, R. M. Shelby, A. Z. Genack, and D. A. Weitz, Opt. Lett. 5, 462 (1980).
    [CrossRef] [PubMed]
  12. G. K. Liu and R. L. Cone, Phys. Rev. B 41, 6193 (1990).
    [CrossRef]

1998 (1)

1996 (1)

Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

1994 (1)

T. Schmidt, R. M. Macfarlane, and S. Voelker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

1992 (2)

U. P. Wild, S. Bernet, B. Kohler, and A. Renn, Pure Appl. Chem. 64, 1335 (1992).
[CrossRef]

W. Zhao, Z. F. Song, and M. Z. Su, J. Rare Earths 4, 241 (1992).

1991 (1)

R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

1990 (2)

G. K. Liu and J. V. Beitz, Chem. Phys. Lett. 171, 335 (1990).

G. K. Liu and R. L. Cone, Phys. Rev. B 41, 6193 (1990).
[CrossRef]

1988 (1)

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).

1980 (1)

1978 (1)

J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978).

Beitz, J. V.

G. K. Liu and J. V. Beitz, Chem. Phys. Lett. 171, 335 (1990).

Berg, M.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).

Bernet, S.

U. P. Wild, S. Bernet, B. Kohler, and A. Renn, Pure Appl. Chem. 64, 1335 (1992).
[CrossRef]

Bill, H.

R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

Bruce, A.

Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Cone, R. L.

G. K. Liu and R. L. Cone, Phys. Rev. B 41, 6193 (1990).
[CrossRef]

Fayer, M. D.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).

Fujita, K.

Gavrilovic, P.

Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Genack, A. Z.

Grodkiewicz, W. H.

Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Hayes, J. M.

J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978).

Hirao, K.

Jaaniso, R.

R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

Kohler, B.

U. P. Wild, S. Bernet, B. Kohler, and A. Renn, Pure Appl. Chem. 64, 1335 (1992).
[CrossRef]

Littau, K. A.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).

Liu, G. K.

G. K. Liu and J. V. Beitz, Chem. Phys. Lett. 171, 335 (1990).

G. K. Liu and R. L. Cone, Phys. Rev. B 41, 6193 (1990).
[CrossRef]

Macfarlane, R. M.

T. Schmidt, R. M. Macfarlane, and S. Voelker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

R. M. Macfarlane, R. M. Shelby, A. Z. Genack, and D. A. Weitz, Opt. Lett. 5, 462 (1980).
[CrossRef] [PubMed]

R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole-Burning:?Science and Applications, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.
[CrossRef]

Mao, Y. N.

Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Narasimhan, L. R.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).

Renn, A.

U. P. Wild, S. Bernet, B. Kohler, and A. Renn, Pure Appl. Chem. 64, 1335 (1992).
[CrossRef]

Schmidt, T.

T. Schmidt, R. M. Macfarlane, and S. Voelker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

Shelby, R. M.

R. M. Macfarlane, R. M. Shelby, A. Z. Genack, and D. A. Weitz, Opt. Lett. 5, 462 (1980).
[CrossRef] [PubMed]

R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole-Burning:?Science and Applications, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.
[CrossRef]

Singh, S.

Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Small, G. J.

J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978).

Soga, N.

Song, Z. F.

W. Zhao, Z. F. Song, and M. Z. Su, J. Rare Earths 4, 241 (1992).

Su, M. Z.

W. Zhao, Z. F. Song, and M. Z. Su, J. Rare Earths 4, 241 (1992).

Tanaka, K.

Voelker, S.

T. Schmidt, R. M. Macfarlane, and S. Voelker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

Walsh, C. A.

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).

Weitz, D. A.

Wild, U. P.

U. P. Wild, S. Bernet, B. Kohler, and A. Renn, Pure Appl. Chem. 64, 1335 (1992).
[CrossRef]

Zhao, W.

W. Zhao, Z. F. Song, and M. Z. Su, J. Rare Earths 4, 241 (1992).

Appl. Phys. Lett. (1)

Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Chem. Phys. (1)

J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978).

Chem. Phys. Lett. (1)

G. K. Liu and J. V. Beitz, Chem. Phys. Lett. 171, 335 (1990).

Europhys. Lett. (1)

R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

J. Chem. Phys. (1)

M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).

J. Opt. Soc. Am. B (1)

J. Rare Earths (1)

W. Zhao, Z. F. Song, and M. Z. Su, J. Rare Earths 4, 241 (1992).

Opt. Lett. (1)

Phys. Rev. B (2)

G. K. Liu and R. L. Cone, Phys. Rev. B 41, 6193 (1990).
[CrossRef]

T. Schmidt, R. M. Macfarlane, and S. Voelker, Phys. Rev. B 50, 15707 (1994).
[CrossRef]

Pure Appl. Chem. (1)

U. P. Wild, S. Bernet, B. Kohler, and A. Renn, Pure Appl. Chem. 64, 1335 (1992).
[CrossRef]

Other (1)

R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole-Burning:?Science and Applications, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Persistent spectral holes burned in the F07D05 transition of Eu3+ in BaFCl at 4  K. The excitation energy was centered at 575.98  nm, with laser intensity less than 30 W/cm2. The spectra were monitored by the D05F27 emission at 616.30  nm. Each hole in spectrum (a) was burned for 2.5  min, and the holes pointed to by the arrows in (b) were burned subsequently for 1.0  min.

Fig. 2
Fig. 2

Laser-excitation-induced site conversion. (a) Excitation spectra of the F07D05 transition of Eu3+ moni-tored by fluorescence emission at 616.30  nm before (solid curve) and after (dotted curve) laser pumping of Eu3+ about 575.98  nm for 40  min. (b) Emission spectra of selective excitation of Eu3+ at 573.65  nm before (solid curve) and after (dotted curve) laser pumping at 575.98  nm. The laser bandwidth was 2 GHz.

Fig. 3
Fig. 3

Influence on PSHB efficiency of hyperfine spectral hole burning. The scattered data are the actual depth of a persistent hole as a function of burning time. The continuous curve is the intensity of the 616.30-nm fluorescence that monitors the hole burning at 575.98  nm. The laser intensity was 20 W/cm2 for both measurements, and the sample temperature was 4  K.

Metrics