Abstract

We address the problem of soliton phase jitter caused by fiber amplifier noise in a communication channel. An analytical expression for phase jitter is derived by use of perturbation theory. In the absence of filters the variance of the phase is found to be proportional to the cube of the propagation distance, but it increases only linearly if in-line filters are used. We verify with simulations that in-line filters maintain the phase jitter at a level that is tolerable for transoceanic links.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Leclerc and E. Desurvire, Opt. Lett. 23, 1453 (1998).
    [CrossRef]
  2. H. A. Haus, J. Opt. Soc. Am. B 8, 1122 (1991).
    [CrossRef]
  3. J. P. Gordon and H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  4. H. A. Haus and Y. La, J. Opt. Soc. Am. B 7, 386 (1990).
    [CrossRef]
  5. T. Georges and F. Favre, J. Opt. Soc. Am. B 10, 1880 (1993).
    [CrossRef]
  6. T. Georges, Opt. Fiber Technol. Mater. Devices Syst. 1, 97 (1995).
    [CrossRef]
  7. K. J. Blow, N. J. Doran, and S. J. D. Phoenix, Opt. Commun. 88, 137 (1992).
    [CrossRef]

1998 (1)

1995 (1)

T. Georges, Opt. Fiber Technol. Mater. Devices Syst. 1, 97 (1995).
[CrossRef]

1993 (1)

1992 (1)

K. J. Blow, N. J. Doran, and S. J. D. Phoenix, Opt. Commun. 88, 137 (1992).
[CrossRef]

1991 (1)

1990 (1)

1986 (1)

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

K. J. Blow, N. J. Doran, and S. J. D. Phoenix, Opt. Commun. 88, 137 (1992).
[CrossRef]

Opt. Fiber Technol. Mater. Devices Syst. (1)

T. Georges, Opt. Fiber Technol. Mater. Devices Syst. 1, 97 (1995).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Standard deviation of the phase δϕ2/π versus propagation distance.

Tables (1)

Tables Icon

Table 1 Numerical Values of the System Parameters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

iuz+122ut2+u2u=ϵPu,
ust=A sechAt-αexpiϕ-iωt,
ϕz=A2-ω22.
niz,tnjz,t=12ϵnnspFGhνδijδt-tδz-z,
niz,t=0,
δA2=AϵnnspFG,
δω2=A3ϵnnspFG,
δα2=π212AϵnnspFG,
δϕ2=13Aπ212+1ϵnnspFG.
δϕnzA=p=1nAδAp-ωδωpn-pzA+δϕp,
δϕ2z=ϵnnspFGz3zAA3z2+Az2ω23+1Aπ212+1.
δϕ2Z=nspfGΓhn2AeffZ[8 ln31+2D3τ3Z2+2π2c2τπ212+13ln1+2Dλ4].
lnTω=iζ1ω-ζ2ω2+,
az=-kfa,
δϕz=p=1nδApkf1-exp-kfz-pzA+δϕp.
δϕ2z=ϵnnspFGz3zAfkf zz2+π212+1,
fkf z=3kf2z21-21-exp-kf zkf z+1-exp-2kf z2kf z.
δϕ2Z=2π2c2n2nspfGΓτ3ln1+2λ4AeffDZ3kf2+π212+1.
ϕ= tan-1u2Imudtu2Reudt.

Metrics