Abstract

Optical dephasing measurements using degenerate four-wave mixing (DFWM) were performed on thin dye–polymer films at room temperature. Incoherent light centered at 575  nm was used as a source for ultrafast measurements on the blue side of the inhomogeneous distribution of the oxazine dye Nile Blue. Under these conditions, a new form of interference was observed as a sinusoidal variation of the DFWM signal versus delay time. A measured interference period of 1.96±0.07 fs corresponds to the optical cycle time of the light source. Numerical solutions for the DFWM intensity confirm the oscillation effect and estimate a measured dephasing time of 2–3 fs.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, S. Mukamel, Annu. Rev. Phys. Chem. 41, 647 (1990).
    [CrossRef]
  2. T. Kobayashi, A. Terasaki, T. Hattori, and K. Kurokawa, Appl. Phys. B 47, 107 (1988).
    [CrossRef]
  3. A. M. Weiner, S. De Silvestri, and E. P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985).
    [CrossRef]
  4. C. J. Bardeen and C. V. Shank, Chem. Phys. Lett. 203, 535 (1993).
    [CrossRef]
  5. Y. Zhang, S. R. Hartmann, and F. Moshary, J. Chem. Phys. 104, 4380 (1996).
    [CrossRef]
  6. S. Nakanishi, H. Ohta, N. Makimoto, and H. Itoh, Phys. Rev. B 45, 2825 (1992).
    [CrossRef]
  7. C. H. Brito Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, Chem. Phys. Lett. 132, 341 (1986).
    [CrossRef]
  8. L. R. Narasimhan, D. W. Pack, and M. D. Fayer, Chem. Phys. Lett. 152, 287 (1988).
    [CrossRef]
  9. M. Fujiwara, R. Kuroda, and H. Nakatsuka, J. Opt. Soc. Am. B 2, 1634 (1985).
    [CrossRef]
  10. S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
    [CrossRef]
  11. N. Morita and T. Yajima, Phys. Rev. A 30, 2525 (1984).
    [CrossRef]

1996 (1)

Y. Zhang, S. R. Hartmann, and F. Moshary, J. Chem. Phys. 104, 4380 (1996).
[CrossRef]

1993 (1)

C. J. Bardeen and C. V. Shank, Chem. Phys. Lett. 203, 535 (1993).
[CrossRef]

1992 (1)

S. Nakanishi, H. Ohta, N. Makimoto, and H. Itoh, Phys. Rev. B 45, 2825 (1992).
[CrossRef]

1990 (1)

See, for example, S. Mukamel, Annu. Rev. Phys. Chem. 41, 647 (1990).
[CrossRef]

1988 (2)

T. Kobayashi, A. Terasaki, T. Hattori, and K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

L. R. Narasimhan, D. W. Pack, and M. D. Fayer, Chem. Phys. Lett. 152, 287 (1988).
[CrossRef]

1986 (1)

C. H. Brito Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, Chem. Phys. Lett. 132, 341 (1986).
[CrossRef]

1985 (3)

S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
[CrossRef]

A. M. Weiner, S. De Silvestri, and E. P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985).
[CrossRef]

M. Fujiwara, R. Kuroda, and H. Nakatsuka, J. Opt. Soc. Am. B 2, 1634 (1985).
[CrossRef]

1984 (1)

N. Morita and T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

Bardeen, C. J.

C. J. Bardeen and C. V. Shank, Chem. Phys. Lett. 203, 535 (1993).
[CrossRef]

Brito Cruz, C. H.

C. H. Brito Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, Chem. Phys. Lett. 132, 341 (1986).
[CrossRef]

De Silvestri, S.

S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
[CrossRef]

A. M. Weiner, S. De Silvestri, and E. P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985).
[CrossRef]

Fayer, M. D.

L. R. Narasimhan, D. W. Pack, and M. D. Fayer, Chem. Phys. Lett. 152, 287 (1988).
[CrossRef]

Fork, R. L.

C. H. Brito Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, Chem. Phys. Lett. 132, 341 (1986).
[CrossRef]

Fujimoto, J. G.

S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
[CrossRef]

Fujiwara, M.

Gamble, E. B.

S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
[CrossRef]

Hartmann, S. R.

Y. Zhang, S. R. Hartmann, and F. Moshary, J. Chem. Phys. 104, 4380 (1996).
[CrossRef]

Hattori, T.

T. Kobayashi, A. Terasaki, T. Hattori, and K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Ippen, E. P.

S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
[CrossRef]

A. M. Weiner, S. De Silvestri, and E. P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985).
[CrossRef]

Itoh, H.

S. Nakanishi, H. Ohta, N. Makimoto, and H. Itoh, Phys. Rev. B 45, 2825 (1992).
[CrossRef]

Knox, W. H.

C. H. Brito Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, Chem. Phys. Lett. 132, 341 (1986).
[CrossRef]

Kobayashi, T.

T. Kobayashi, A. Terasaki, T. Hattori, and K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Kuroda, R.

Kurokawa, K.

T. Kobayashi, A. Terasaki, T. Hattori, and K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Makimoto, N.

S. Nakanishi, H. Ohta, N. Makimoto, and H. Itoh, Phys. Rev. B 45, 2825 (1992).
[CrossRef]

Morita, N.

N. Morita and T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

Moshary, F.

Y. Zhang, S. R. Hartmann, and F. Moshary, J. Chem. Phys. 104, 4380 (1996).
[CrossRef]

Mukamel, S.

See, for example, S. Mukamel, Annu. Rev. Phys. Chem. 41, 647 (1990).
[CrossRef]

Nakanishi, S.

S. Nakanishi, H. Ohta, N. Makimoto, and H. Itoh, Phys. Rev. B 45, 2825 (1992).
[CrossRef]

Nakatsuka, H.

Narasimhan, L. R.

L. R. Narasimhan, D. W. Pack, and M. D. Fayer, Chem. Phys. Lett. 152, 287 (1988).
[CrossRef]

Nelson, K. A.

S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
[CrossRef]

Ohta, H.

S. Nakanishi, H. Ohta, N. Makimoto, and H. Itoh, Phys. Rev. B 45, 2825 (1992).
[CrossRef]

Pack, D. W.

L. R. Narasimhan, D. W. Pack, and M. D. Fayer, Chem. Phys. Lett. 152, 287 (1988).
[CrossRef]

Shank, C. V.

C. J. Bardeen and C. V. Shank, Chem. Phys. Lett. 203, 535 (1993).
[CrossRef]

C. H. Brito Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, Chem. Phys. Lett. 132, 341 (1986).
[CrossRef]

Terasaki, A.

T. Kobayashi, A. Terasaki, T. Hattori, and K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Weiner, A. M.

Williams, L. R.

S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
[CrossRef]

Yajima, T.

N. Morita and T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

Zhang, Y.

Y. Zhang, S. R. Hartmann, and F. Moshary, J. Chem. Phys. 104, 4380 (1996).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

See, for example, S. Mukamel, Annu. Rev. Phys. Chem. 41, 647 (1990).
[CrossRef]

Appl. Phys. B (1)

T. Kobayashi, A. Terasaki, T. Hattori, and K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Chem. Phys. Lett. (4)

S. De Silvestri, J. G. Fujimoto, E. P. Ippen, E. B. Gamble, L. R. Williams, and K. A. Nelson, Chem. Phys. Lett. 116, 146 (1985).
[CrossRef]

C. J. Bardeen and C. V. Shank, Chem. Phys. Lett. 203, 535 (1993).
[CrossRef]

C. H. Brito Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, Chem. Phys. Lett. 132, 341 (1986).
[CrossRef]

L. R. Narasimhan, D. W. Pack, and M. D. Fayer, Chem. Phys. Lett. 152, 287 (1988).
[CrossRef]

J. Chem. Phys. (1)

Y. Zhang, S. R. Hartmann, and F. Moshary, J. Chem. Phys. 104, 4380 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

Phys. Rev. A (1)

N. Morita and T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

Phys. Rev. B (1)

S. Nakanishi, H. Ohta, N. Makimoto, and H. Itoh, Phys. Rev. B 45, 2825 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Beam geometry for the time-delayed DFWM experiment. Dephasing measurements are made from light scattered in the 2k1-k2 and the 2k2-k1 directions.

Fig. 2
Fig. 2

Scattered intensity versus delay with incoherent light centered at 647  nm at T=12 K. The dephasing time derived from the peak shift is 94  fs.

Fig. 3
Fig. 3

Scattered intensity versus delay with incoherent light centered at 575  nm at room temperature. The interference pattern has a delay time period of 1.96±0.07 fs.

Fig. 4
Fig. 4

Correlation function derived from the Rhodamine  590  dye power spectrum.

Fig. 5
Fig. 5

Computer simulation of the scattered light intensity along the 2k2-k1 direction. The correlation function shown in Fig.  4 was used in this simulation, and T2=2 fs was used for the relaxation time.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P3ẼtẼtẼ*t+τexpiω0t-τ,
Et=E˜texp-iω0t=-Aωexp-iωtdω.
Iτ0dt0dtft-tft-τft-τ×exp-2t+tT2,
ft=-E˜tE˜*t-tdt=-AωA*ωexp-iω-ω0tdω.

Metrics