Abstract

The experimental observation of bright spatial solitons in the form of mighty morphing solitons is reported for the first time to the author's knowledge. These are Gaussian-like beams of elliptical cross section, which appear to change their shape constantly as they propagate. Saturation of the nonlinear medium is shown to progress logarithmically.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965); D. Grishkowsky, Phys. Rev. Lett. 24, 866 (1970); J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); M. L. Dowell, R. C. Hart, A. Gallagher, and J. Cooper, Phys. Rev. A 53, 1775 (1996), and references therein.
    [CrossRef] [PubMed]
  2. A. W. Snyder, D. J. Mitchell, L. Poladian, and F. Ladouceur, Opt. Lett. 16, 21 (1991).
    [CrossRef] [PubMed]
  3. V. Tikhonenko, J. Christou, and B. Luther-Davies, J. Opt. Soc. Am. B 12, 2046 (1995); M.-F. Shih, M. Segev, and G. Salamo, Opt. Lett. 21, 931 (1996).
    [CrossRef] [PubMed]
  4. M. Karlsson, Phys. Rev. A 46, 2726 (1992); M. L. Dowell, B. D. Paul, A. Gallagher, and J. Cooper, Phys. Rev. A 52, 3244 (1995).
    [CrossRef] [PubMed]
  5. A. W. Snyder and D. J. Mitchell, Opt. Lett. 22, 16 (1997).
    [CrossRef] [PubMed]
  6. V. Tikhonenko, J. Christou, and B. Luther-Davies, Phys. Rev. Lett. 76, 2698 (1996).
    [CrossRef] [PubMed]
  7. D. H. Close, Phys. Rev. 153, 360 (1967).
    [CrossRef]
  8. The applicability of a two-level model in case of resonance excitation of alkali atom vapors was discussed by G. A. Swartzlander, H. Yin, and A. E. Kaplan, J. Opt. Soc. Am. B 6, 1317 (1989).
    [CrossRef]

1997 (1)

1996 (1)

V. Tikhonenko, J. Christou, and B. Luther-Davies, Phys. Rev. Lett. 76, 2698 (1996).
[CrossRef] [PubMed]

1995 (1)

1992 (1)

M. Karlsson, Phys. Rev. A 46, 2726 (1992); M. L. Dowell, B. D. Paul, A. Gallagher, and J. Cooper, Phys. Rev. A 52, 3244 (1995).
[CrossRef] [PubMed]

1991 (1)

1989 (1)

1967 (1)

D. H. Close, Phys. Rev. 153, 360 (1967).
[CrossRef]

1964 (1)

R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965); D. Grishkowsky, Phys. Rev. Lett. 24, 866 (1970); J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); M. L. Dowell, R. C. Hart, A. Gallagher, and J. Cooper, Phys. Rev. A 53, 1775 (1996), and references therein.
[CrossRef] [PubMed]

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965); D. Grishkowsky, Phys. Rev. Lett. 24, 866 (1970); J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); M. L. Dowell, R. C. Hart, A. Gallagher, and J. Cooper, Phys. Rev. A 53, 1775 (1996), and references therein.
[CrossRef] [PubMed]

Christou, J.

Close, D. H.

D. H. Close, Phys. Rev. 153, 360 (1967).
[CrossRef]

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965); D. Grishkowsky, Phys. Rev. Lett. 24, 866 (1970); J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); M. L. Dowell, R. C. Hart, A. Gallagher, and J. Cooper, Phys. Rev. A 53, 1775 (1996), and references therein.
[CrossRef] [PubMed]

Kaplan, A. E.

Karlsson, M.

M. Karlsson, Phys. Rev. A 46, 2726 (1992); M. L. Dowell, B. D. Paul, A. Gallagher, and J. Cooper, Phys. Rev. A 52, 3244 (1995).
[CrossRef] [PubMed]

Ladouceur, F.

Luther-Davies, B.

Mitchell, D. J.

Poladian, L.

Snyder, A. W.

Swartzlander, G. A.

Tikhonenko, V.

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965); D. Grishkowsky, Phys. Rev. Lett. 24, 866 (1970); J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); M. L. Dowell, R. C. Hart, A. Gallagher, and J. Cooper, Phys. Rev. A 53, 1775 (1996), and references therein.
[CrossRef] [PubMed]

Yin, H.

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. (1)

D. H. Close, Phys. Rev. 153, 360 (1967).
[CrossRef]

Phys. Rev. A (1)

M. Karlsson, Phys. Rev. A 46, 2726 (1992); M. L. Dowell, B. D. Paul, A. Gallagher, and J. Cooper, Phys. Rev. A 52, 3244 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

V. Tikhonenko, J. Christou, and B. Luther-Davies, Phys. Rev. Lett. 76, 2698 (1996).
[CrossRef] [PubMed]

R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965); D. Grishkowsky, Phys. Rev. Lett. 24, 866 (1970); J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); M. L. Dowell, R. C. Hart, A. Gallagher, and J. Cooper, Phys. Rev. A 53, 1775 (1996), and references therein.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Variation of the laser beam at the output of the nonlinear medium. Atom concentrations (bottom to top; ×1011 cm-3): 2.2, 2.5, 3.1, 4.0, and 5.1. Input beam power, 140 mW; detuning from resonance, 0.5 GHz.

Fig. 2
Fig. 2

Nonlinear refractive index of rubidium vapor versus laser beam intensity. Solid curves, theoretical results7; dashed curves, obtained from approximation (1b). Detuning from resonance: (a) 0.52  GHz and (b) 0.32  GHz. Atom concentrations: (a) 3.1×1011 cm-3, (b) 9.1×1011 cm-3.

Fig. 3
Fig. 3

Experimentally observed output beam's diameter variation as a function of rubidium-atom concentration. Solid curves, interpolation of the experimental data for the initially major (circles) and minor (squares) laser beam radii. Input beam power, 140 mW; detuning from resonance, 0.5 GHz. Dashed curve, variation of output beam ellipticity (ratio of major to minor diameters).

Fig. 4
Fig. 4

Experimentally observed output beam variation as a function of nonlinearity parameter Δ. Variation of the experimental data for the initially major (circles) and minor (squares) laser beam radii. All data were normalized by critical beam radius ρc. Input beam power, 140 mW; detuning from resonance, 0.5 GHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

nNLΔν1, NRb, InsΔν1, NRbI1+I/Is1Δν1,
nNLΔν1, NRb, IΔΔν1, NRbln1+I/IsΔν1,

Metrics