Abstract

New expansions are derived for the simulation of three-dimensional anisotropic scatterers with the generalized multipole technique (GMT). This extension of the GMT makes possible the investigation of subtle phenomena such as the interaction of light with realistic crystals or magneto-optic materials.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hafner and L. Bomholt, The 3D Electromagnetic Wave Simulator (Wiley, New York, 1993).
  2. Yu. A. Eremin and A. G. Sveshnikov, Electromagnetics 13, 1 (1993).
    [CrossRef]
  3. Y. Leviatan, Z. Baharav, and E. Heyman, IEEE Trans. Antennas Propag. 43, 1091 (1995).
    [CrossRef]
  4. T. Evers, H. Dahl, and T. Wriedt, Electron. Lett. 32, 1356 (1996).
    [CrossRef]
  5. L. Novotny, D. W. Pohl, and B. Hecht, Opt. Lett. 20, 970 (1995).
    [CrossRef]
  6. Yu. A. Eremin, N. V. Orlov, and V. I. Rozenberg, Opt. Spectrosc. (USSR) 73, 573 (1992).
  7. R. Yew-Siow Tay and N. Kuster, Appl. Computat. Electromagnetics J. 9, 79 (1994).
  8. N. B. Piller and O. J. F. Martin, “Extension of the generalized multipole technique to anisotropic medias,” Opt. Commun. (to be published).
  9. C. Hafner, J. Opt. Soc. Am. A 12, 1057 (1995).
    [CrossRef]
  10. M. Kawano, H. Ikuno, and M. Nishimoto, Inst. Electron. Info. Commun. Eng. Trans. Electron. E76-C, 1358 (1996).
  11. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap.??16.
  12. P. A. Bobbert and J. Vlieger, Physica A 137, 209 (1986).
    [CrossRef]
  13. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), Eq.??(7.60), p. 410.
  14. W. C. Chew, Waves and Fields in Inhomogeneous Media (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), Chap.??1.3.3.
  15. E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
    [CrossRef]
  16. N. B. Piller, Opt. Lett. 22, 1674 (1997).
    [CrossRef]
  17. W. A. McGahan, Z. S. Shan, and J. A. Woollam, Appl. Phys. Commun. 8, 209 (1988).
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Pergamon, New York, 1980), p. 63.
  19. M. J. Freiser, IEEE Trans. Magn. MG-4, 152 (1965).
  20. P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
    [CrossRef]
  21. W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap.??33.

1997 (1)

1996 (2)

T. Evers, H. Dahl, and T. Wriedt, Electron. Lett. 32, 1356 (1996).
[CrossRef]

M. Kawano, H. Ikuno, and M. Nishimoto, Inst. Electron. Info. Commun. Eng. Trans. Electron. E76-C, 1358 (1996).

1995 (3)

1994 (1)

R. Yew-Siow Tay and N. Kuster, Appl. Computat. Electromagnetics J. 9, 79 (1994).

1993 (1)

Yu. A. Eremin and A. G. Sveshnikov, Electromagnetics 13, 1 (1993).
[CrossRef]

1992 (1)

Yu. A. Eremin, N. V. Orlov, and V. I. Rozenberg, Opt. Spectrosc. (USSR) 73, 573 (1992).

1988 (1)

W. A. McGahan, Z. S. Shan, and J. A. Woollam, Appl. Phys. Commun. 8, 209 (1988).

1986 (1)

P. A. Bobbert and J. Vlieger, Physica A 137, 209 (1986).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
[CrossRef]

1967 (1)

P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
[CrossRef]

1965 (1)

M. J. Freiser, IEEE Trans. Magn. MG-4, 152 (1965).

Baharav, Z.

Y. Leviatan, Z. Baharav, and E. Heyman, IEEE Trans. Antennas Propag. 43, 1091 (1995).
[CrossRef]

Bobbert, P. A.

P. A. Bobbert and J. Vlieger, Physica A 137, 209 (1986).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Pergamon, New York, 1980), p. 63.

Bomholt, L.

C. Hafner and L. Bomholt, The 3D Electromagnetic Wave Simulator (Wiley, New York, 1993).

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), Chap.??1.3.3.

Dahl, H.

T. Evers, H. Dahl, and T. Wriedt, Electron. Lett. 32, 1356 (1996).
[CrossRef]

Eremin, Yu. A.

Yu. A. Eremin and A. G. Sveshnikov, Electromagnetics 13, 1 (1993).
[CrossRef]

Yu. A. Eremin, N. V. Orlov, and V. I. Rozenberg, Opt. Spectrosc. (USSR) 73, 573 (1992).

Evers, T.

T. Evers, H. Dahl, and T. Wriedt, Electron. Lett. 32, 1356 (1996).
[CrossRef]

Freiser, M. J.

M. J. Freiser, IEEE Trans. Magn. MG-4, 152 (1965).

Hafner, C.

C. Hafner, J. Opt. Soc. Am. A 12, 1057 (1995).
[CrossRef]

C. Hafner and L. Bomholt, The 3D Electromagnetic Wave Simulator (Wiley, New York, 1993).

Harris, T. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap.??33.

Hecht, B.

Heyman, E.

Y. Leviatan, Z. Baharav, and E. Heyman, IEEE Trans. Antennas Propag. 43, 1091 (1995).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Pergamon, New York, 1980), p. 63.

Ikuno, H.

M. Kawano, H. Ikuno, and M. Nishimoto, Inst. Electron. Info. Commun. Eng. Trans. Electron. E76-C, 1358 (1996).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap.??16.

Kawano, M.

M. Kawano, H. Ikuno, and M. Nishimoto, Inst. Electron. Info. Commun. Eng. Trans. Electron. E76-C, 1358 (1996).

Kuster, N.

R. Yew-Siow Tay and N. Kuster, Appl. Computat. Electromagnetics J. 9, 79 (1994).

Leviatan, Y.

Y. Leviatan, Z. Baharav, and E. Heyman, IEEE Trans. Antennas Propag. 43, 1091 (1995).
[CrossRef]

Martin, O. J. F.

N. B. Piller and O. J. F. Martin, “Extension of the generalized multipole technique to anisotropic medias,” Opt. Commun. (to be published).

McGahan, W. A.

W. A. McGahan, Z. S. Shan, and J. A. Woollam, Appl. Phys. Commun. 8, 209 (1988).

Nishimoto, M.

M. Kawano, H. Ikuno, and M. Nishimoto, Inst. Electron. Info. Commun. Eng. Trans. Electron. E76-C, 1358 (1996).

Novotny, L.

Orlov, N. V.

Yu. A. Eremin, N. V. Orlov, and V. I. Rozenberg, Opt. Spectrosc. (USSR) 73, 573 (1992).

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
[CrossRef]

Pershan, P. S.

P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
[CrossRef]

Piller, N. B.

N. B. Piller, Opt. Lett. 22, 1674 (1997).
[CrossRef]

N. B. Piller and O. J. F. Martin, “Extension of the generalized multipole technique to anisotropic medias,” Opt. Commun. (to be published).

Pohl, D. W.

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
[CrossRef]

Rozenberg, V. I.

Yu. A. Eremin, N. V. Orlov, and V. I. Rozenberg, Opt. Spectrosc. (USSR) 73, 573 (1992).

Shan, Z. S.

W. A. McGahan, Z. S. Shan, and J. A. Woollam, Appl. Phys. Commun. 8, 209 (1988).

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), Eq.??(7.60), p. 410.

Sveshnikov, A. G.

Yu. A. Eremin and A. G. Sveshnikov, Electromagnetics 13, 1 (1993).
[CrossRef]

Thomas, M. E.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap.??33.

Tropf, W. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap.??33.

Vlieger, J.

P. A. Bobbert and J. Vlieger, Physica A 137, 209 (1986).
[CrossRef]

Woollam, J. A.

W. A. McGahan, Z. S. Shan, and J. A. Woollam, Appl. Phys. Commun. 8, 209 (1988).

Wriedt, T.

T. Evers, H. Dahl, and T. Wriedt, Electron. Lett. 32, 1356 (1996).
[CrossRef]

Yew-Siow Tay, R.

R. Yew-Siow Tay and N. Kuster, Appl. Computat. Electromagnetics J. 9, 79 (1994).

Appl. Computat. Electromagnetics J. (1)

R. Yew-Siow Tay and N. Kuster, Appl. Computat. Electromagnetics J. 9, 79 (1994).

Appl. Phys. Commun. (1)

W. A. McGahan, Z. S. Shan, and J. A. Woollam, Appl. Phys. Commun. 8, 209 (1988).

Astrophys. J. (1)

E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705 (1973).
[CrossRef]

Electromagnetics (1)

Yu. A. Eremin and A. G. Sveshnikov, Electromagnetics 13, 1 (1993).
[CrossRef]

Electron. Lett. (1)

T. Evers, H. Dahl, and T. Wriedt, Electron. Lett. 32, 1356 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

Y. Leviatan, Z. Baharav, and E. Heyman, IEEE Trans. Antennas Propag. 43, 1091 (1995).
[CrossRef]

IEEE Trans. Magn. (1)

M. J. Freiser, IEEE Trans. Magn. MG-4, 152 (1965).

Inst. Electron. Info. Commun. Eng. Trans. Electron. (1)

M. Kawano, H. Ikuno, and M. Nishimoto, Inst. Electron. Info. Commun. Eng. Trans. Electron. E76-C, 1358 (1996).

J. Appl. Phys. (1)

P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Opt. Spectrosc. (USSR) (1)

Yu. A. Eremin, N. V. Orlov, and V. I. Rozenberg, Opt. Spectrosc. (USSR) 73, 573 (1992).

Physica A (1)

P. A. Bobbert and J. Vlieger, Physica A 137, 209 (1986).
[CrossRef]

Other (7)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), Eq.??(7.60), p. 410.

W. C. Chew, Waves and Fields in Inhomogeneous Media (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), Chap.??1.3.3.

C. Hafner and L. Bomholt, The 3D Electromagnetic Wave Simulator (Wiley, New York, 1993).

W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap.??33.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Pergamon, New York, 1980), p. 63.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap.??16.

N. B. Piller and O. J. F. Martin, “Extension of the generalized multipole technique to anisotropic medias,” Opt. Commun. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Parameters (a) S3 and (b) S4 of the scattering amplitude matrix for a magneto-optic Dy7Co5 sphere of radius 250  nm. The incident field is a plane wave of wavelength 633  nm propagating in the zˆ direction. The scatterer is magnetized in the zˆ direction. The parameters S3 and S4 are represented for the scattering directions θ=-ππ, ϕ=0 for different magnetization parameters ζ between zero magnetization ζ=0 and saturation [ζ=1; Eq.  (8)].

Fig. 2
Fig. 2

Amplitude of the electric field at time t=0 for a TiO2 ellipsoid. The major and minor axes of the ellipsoid are 900 and 600  nm, respectively. The scatterer is illuminated by a unit plane wave of wavelength 633  nm, polarized in the xˆ direction and propagating in the zˆ direction. The crystal's ordinary (extraordinary) permittivity is 6.67 (8.24). The crystal's principal axis is parallel to either (a) the xˆ axis or (b) the yˆ axis.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ψlmr=jlkrYlmθ, ϕ,
 eElmr=××rψlmr,
 hElmr=ik×rψlmr.
ψlmr=i-14πSexpikkˆrYlmθ, ϕdΩ,
 eElmr=k4πSexpimϕV˜lmeθ, ϕθr+iU˜lmeθ, ϕϕrdΩ,
 hElmr=k4πSexpimϕiU˜lmeθ, ϕθr-V˜lmeθ, ϕϕrdΩ,
eθ, ϕαr=aθ, ϕαeθ, ϕpw1r+bθ, ϕαeθ, ϕpw2r,
=[d-ζoff0ζoffd000d]

Metrics