Abstract

A beam of light incident upon a diffractive structure can under resonance conditions be subject to a rather large lateral displacement. The effect is demonstrated with a Gaussian profile beam and two geometries based on a waveguide grating and a single-mode waveguide.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang and T. Tamir, J. Opt. Soc. Am. A 6, 1368 (1989).
    [CrossRef]
  2. W. Nasalski, J. Opt. Soc. Am. A 13, 172 (1996).
    [CrossRef]
  3. P. Mazur and B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
    [CrossRef]
  4. J.-J. Greffet and C. Baylard, Opt. Commun. 93, 271 (1992).
    [CrossRef]
  5. R. P. Riesz and R. Simon, J. Opt. Soc. Am. A 2, 1809 (1985).
    [CrossRef]
  6. T. Tamir, J. Opt. Soc. Am. A 3, 558 (1986).
    [CrossRef]
  7. R. Güther and B. H. Kleemann, in Diffractive Optics, Vol. 12 of European Optical Society Topical Meetings Digest Series (European Optical Society, Orsay, France, 1997), pp. 16–17.
  8. J.-J. Greffet and C. Baylard, Opt. Lett. 18, 1129 (1993).
    [CrossRef]
  9. T. Tamir and H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971).
    [CrossRef]
  10. M. Schmitz, R. Bräuer, and O. Bryngdahl, Opt. Commun. 124, 1 (1996).
    [CrossRef]
  11. S. Wang, R. Magnusson, J. Bagby, and M. Moharam, J. Opt. Soc. Am. A 7, 1470 (1990).
    [CrossRef]
  12. R. Magnusson and S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
    [CrossRef]
  13. R. Bräuer and O. Bryngdahl, Opt. Lett. 22, 754 (1997).
    [CrossRef]

1997 (1)

1996 (2)

W. Nasalski, J. Opt. Soc. Am. A 13, 172 (1996).
[CrossRef]

M. Schmitz, R. Bräuer, and O. Bryngdahl, Opt. Commun. 124, 1 (1996).
[CrossRef]

1993 (1)

1992 (2)

R. Magnusson and S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

J.-J. Greffet and C. Baylard, Opt. Commun. 93, 271 (1992).
[CrossRef]

1990 (1)

1989 (1)

1986 (1)

1985 (1)

1984 (1)

P. Mazur and B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
[CrossRef]

1971 (1)

Bagby, J.

Baylard, C.

J.-J. Greffet and C. Baylard, Opt. Lett. 18, 1129 (1993).
[CrossRef]

J.-J. Greffet and C. Baylard, Opt. Commun. 93, 271 (1992).
[CrossRef]

Bertoni, H. L.

Bräuer, R.

R. Bräuer and O. Bryngdahl, Opt. Lett. 22, 754 (1997).
[CrossRef]

M. Schmitz, R. Bräuer, and O. Bryngdahl, Opt. Commun. 124, 1 (1996).
[CrossRef]

Bryngdahl, O.

R. Bräuer and O. Bryngdahl, Opt. Lett. 22, 754 (1997).
[CrossRef]

M. Schmitz, R. Bräuer, and O. Bryngdahl, Opt. Commun. 124, 1 (1996).
[CrossRef]

Djafari-Rouhani, B.

P. Mazur and B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
[CrossRef]

Greffet, J.-J.

J.-J. Greffet and C. Baylard, Opt. Lett. 18, 1129 (1993).
[CrossRef]

J.-J. Greffet and C. Baylard, Opt. Commun. 93, 271 (1992).
[CrossRef]

Güther, R.

R. Güther and B. H. Kleemann, in Diffractive Optics, Vol. 12 of European Optical Society Topical Meetings Digest Series (European Optical Society, Orsay, France, 1997), pp. 16–17.

Kleemann, B. H.

R. Güther and B. H. Kleemann, in Diffractive Optics, Vol. 12 of European Optical Society Topical Meetings Digest Series (European Optical Society, Orsay, France, 1997), pp. 16–17.

Magnusson, R.

Mazur, P.

P. Mazur and B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
[CrossRef]

Moharam, M.

Nasalski, W.

Riesz, R. P.

Schmitz, M.

M. Schmitz, R. Bräuer, and O. Bryngdahl, Opt. Commun. 124, 1 (1996).
[CrossRef]

Simon, R.

Tamir, T.

Wang, S.

Zhang, S.

Appl. Phys. Lett. (1)

R. Magnusson and S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Opt. Commun. (2)

J.-J. Greffet and C. Baylard, Opt. Commun. 93, 271 (1992).
[CrossRef]

M. Schmitz, R. Bräuer, and O. Bryngdahl, Opt. Commun. 124, 1 (1996).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

P. Mazur and B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
[CrossRef]

Other (1)

R. Güther and B. H. Kleemann, in Diffractive Optics, Vol. 12 of European Optical Society Topical Meetings Digest Series (European Optical Society, Orsay, France, 1997), pp. 16–17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometries of the diffractive structures. (a) Index-modulated grating: h=400 nm, d=570 nm, 1=1, 2=3+Δ sin2πx/d, 3=2.161. (b) Waveguide structure: h2 variable, h3=87 nm, 1=3.5872, 2=2.1316, 3=5.6169, 4=1.

Fig. 2
Fig. 2

Phase of the reflection coefficient of the waveguide grating versus angle of incidence for several modulation depths of the dielectric constant.

Fig. 3
Fig. 3

Maximum lateral displacement of the reflected beam versus refractive-index modulation of the waveguide grating.

Fig. 4
Fig. 4

Influence of the beam width on the lateral shift for the waveguide grating.

Fig. 5
Fig. 5

Maximum lateral displacement of the beam versus thickness of the gap layer.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ex, z=0=-exp-ikxxexp-kx-kx¯2wk2dkx,
Erx, z=0=-Rkxexp-ikxx×exp-kx-kx¯2wk2dkx=FRkxexp-kx-kx¯2wk2.
Erx, z=0RFexp[iΦkx¯+ikx-kx¯Φkxkx¯]×exp-kx-kx¯2wk2,

Metrics