Abstract

A high-isolation polarization-independent optical quasi-circulator with a simple structure is proposed. A Porro prism is employed in this kind of device for what is believed to be the first time. Because a Porro prism is used, light beams pass back and forth through the main elements in the device. Thus the number of elements used in the device is decreased, and the device structure is simplified. A four-port quasi-circulator with monomode fibers was assembled and tested at the 1.55µm wavelength. Its insertion loss, isolation, and return loss are 1.63, 60, and 55.6 dB, respectively.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Koga, J. Minowa, and T. Matsumoto, Trans. Inst. Electron. Inf. Commun. Eng. Jpn. E 72, 1086 (1989).
  2. Y. Sato and K. Aoyama, IEEE Photon. Technol. Lett. 3, 1001 (1991).
    [CrossRef]
  3. S. Nishi, K. Aida, and K. Nakagawa, presented at the 16th European Conference on Optical Communication, Amsterdam, September 16–20, 1990.
  4. Y. Fujii, IEEE J. Lightwave Technol. 9, 456 (1991).
    [CrossRef]
  5. Y. Fujii, IEEE J. Lightwave Technol. 10, 1238 (1991).
    [CrossRef]
  6. M. Koga and T. Matsumoto, Electron. Lett. 27, 903 (1991).
    [CrossRef]
  7. Y. Fujii, IEEE J. Lightwave Technol. 10, 1226 (1992).
    [CrossRef]
  8. Y. Fujii, Opt. Lett. 18, 250 (1993).
    [CrossRef]
  9. M. Koga and T. Matsumoto, IEEE J. Lightwave Technol. 10, 1210 (1992).
    [CrossRef]
  10. M. Koga, Electron. Lett. 30, 1438 (1994).
    [CrossRef]
  11. Y. Cheng, “Optical circulator,” U.S. patent5574596 (November12, 1996).

1994

M. Koga, Electron. Lett. 30, 1438 (1994).
[CrossRef]

1993

1992

Y. Fujii, IEEE J. Lightwave Technol. 10, 1226 (1992).
[CrossRef]

M. Koga and T. Matsumoto, IEEE J. Lightwave Technol. 10, 1210 (1992).
[CrossRef]

1991

Y. Sato and K. Aoyama, IEEE Photon. Technol. Lett. 3, 1001 (1991).
[CrossRef]

Y. Fujii, IEEE J. Lightwave Technol. 9, 456 (1991).
[CrossRef]

Y. Fujii, IEEE J. Lightwave Technol. 10, 1238 (1991).
[CrossRef]

M. Koga and T. Matsumoto, Electron. Lett. 27, 903 (1991).
[CrossRef]

1989

M. Koga, J. Minowa, and T. Matsumoto, Trans. Inst. Electron. Inf. Commun. Eng. Jpn. E 72, 1086 (1989).

Aida, K.

S. Nishi, K. Aida, and K. Nakagawa, presented at the 16th European Conference on Optical Communication, Amsterdam, September 16–20, 1990.

Aoyama, K.

Y. Sato and K. Aoyama, IEEE Photon. Technol. Lett. 3, 1001 (1991).
[CrossRef]

Cheng, Y.

Y. Cheng, “Optical circulator,” U.S. patent5574596 (November12, 1996).

Fujii, Y.

Y. Fujii, Opt. Lett. 18, 250 (1993).
[CrossRef]

Y. Fujii, IEEE J. Lightwave Technol. 10, 1226 (1992).
[CrossRef]

Y. Fujii, IEEE J. Lightwave Technol. 9, 456 (1991).
[CrossRef]

Y. Fujii, IEEE J. Lightwave Technol. 10, 1238 (1991).
[CrossRef]

Koga, M.

M. Koga, Electron. Lett. 30, 1438 (1994).
[CrossRef]

M. Koga and T. Matsumoto, IEEE J. Lightwave Technol. 10, 1210 (1992).
[CrossRef]

M. Koga and T. Matsumoto, Electron. Lett. 27, 903 (1991).
[CrossRef]

M. Koga, J. Minowa, and T. Matsumoto, Trans. Inst. Electron. Inf. Commun. Eng. Jpn. E 72, 1086 (1989).

Matsumoto, T.

M. Koga and T. Matsumoto, IEEE J. Lightwave Technol. 10, 1210 (1992).
[CrossRef]

M. Koga and T. Matsumoto, Electron. Lett. 27, 903 (1991).
[CrossRef]

M. Koga, J. Minowa, and T. Matsumoto, Trans. Inst. Electron. Inf. Commun. Eng. Jpn. E 72, 1086 (1989).

Minowa, J.

M. Koga, J. Minowa, and T. Matsumoto, Trans. Inst. Electron. Inf. Commun. Eng. Jpn. E 72, 1086 (1989).

Nakagawa, K.

S. Nishi, K. Aida, and K. Nakagawa, presented at the 16th European Conference on Optical Communication, Amsterdam, September 16–20, 1990.

Nishi, S.

S. Nishi, K. Aida, and K. Nakagawa, presented at the 16th European Conference on Optical Communication, Amsterdam, September 16–20, 1990.

Sato, Y.

Y. Sato and K. Aoyama, IEEE Photon. Technol. Lett. 3, 1001 (1991).
[CrossRef]

Electron. Lett.

M. Koga and T. Matsumoto, Electron. Lett. 27, 903 (1991).
[CrossRef]

M. Koga, Electron. Lett. 30, 1438 (1994).
[CrossRef]

IEEE J. Lightwave Technol.

Y. Fujii, IEEE J. Lightwave Technol. 10, 1226 (1992).
[CrossRef]

M. Koga and T. Matsumoto, IEEE J. Lightwave Technol. 10, 1210 (1992).
[CrossRef]

Y. Fujii, IEEE J. Lightwave Technol. 9, 456 (1991).
[CrossRef]

Y. Fujii, IEEE J. Lightwave Technol. 10, 1238 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Sato and K. Aoyama, IEEE Photon. Technol. Lett. 3, 1001 (1991).
[CrossRef]

Opt. Lett.

Trans. Inst. Electron. Inf. Commun. Eng. Jpn. E

M. Koga, J. Minowa, and T. Matsumoto, Trans. Inst. Electron. Inf. Commun. Eng. Jpn. E 72, 1086 (1989).

Other

S. Nishi, K. Aida, and K. Nakagawa, presented at the 16th European Conference on Optical Communication, Amsterdam, September 16–20, 1990.

Y. Cheng, “Optical circulator,” U.S. patent5574596 (November12, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of the proposed high-isolation polarization-independent quasi-circulator.

Fig. 2
Fig. 2

Principle of operation from port  1 to port  2. The top (bottom) row shows the spatial positions and the polarization states of beams propagating in the +z-z direction.

Fig. 3
Fig. 3

Same as Fig.  2 but for operation from port  2 to port  3.

Fig. 4
Fig. 4

Same as Fig.  2 but for operation from port  3 to port  4.

Fig. 5
Fig. 5

Calculated isolation versus rotation error. E, extinction ratio.

Tables (1)

Tables Icon

Table 1 Measured Losses and Isolationa (in Decibels)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B2=A2E cos2 Δθ+sin2 Δθ/1+E.
C2=A2E cos2 Δθ+sin2 Δθ/1+E2.
I=-10×log10C2/A2=-10×log10E cos2 Δθ+sin2 Δθ/1+E2.
D2=A2cos2 Δθ/1+E2.
L=-10×log10D2/A2=-10×log10cos2 Δθ/1+E2.

Metrics