Abstract

We verify experimentally, over a dynamic range of 55 dB in the probability distribution, that the amplified spontaneous emission noise of the 0’s from an optically preamplified receiver is degenerate Bose–Einstein distributed. Using the noise parameters extracted from the experiment, we are able to predict the sensitivity of a 10-Gbit/s direct-detection receiver.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Personick, Bell Syst. Tech. J. 52, 117 (1973); L. G. Kazovsky and O. K. Tonguz, IEEE Photon. Technol. Lett. 3, 53 (1991); R. C. Steele, G. R. Walker, and N. G. Walker, IEEE Photon. Technol. Lett. 3, 545 (1991).
    [CrossRef]
  2. T. Li and M. C. Teich, Electron. Lett. 27, 698 (1991); P. Diament and M. C. Teich, IEEE J. Quantum Electron. 28, 1325 (1992); T. Li and M. C. Teich, IEEE J. Quantum Electron. 29, 2568 (1993).
    [CrossRef]
  3. K. Shimoda, G. Takahashi, and C. H. Townes, Phys. Soc. Jpn. 12, 686 (1957).
    [CrossRef]
  4. L. Mandel, Proc. Phys. Soc. London 74, 233 (1959).
    [CrossRef]
  5. J. B. Johnson, Phys. Rev. 32, 97 (1928); H. Nyquist, Phys. Rev. 32, 110 (1928).
    [CrossRef]
  6. K. Levenberg, Appl. Math. 2, 164 (1944); D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).
    [CrossRef]
  7. J. C. Livas, in Optical Fiber Communication, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD-4.

1991 (1)

T. Li and M. C. Teich, Electron. Lett. 27, 698 (1991); P. Diament and M. C. Teich, IEEE J. Quantum Electron. 28, 1325 (1992); T. Li and M. C. Teich, IEEE J. Quantum Electron. 29, 2568 (1993).
[CrossRef]

1973 (1)

S. D. Personick, Bell Syst. Tech. J. 52, 117 (1973); L. G. Kazovsky and O. K. Tonguz, IEEE Photon. Technol. Lett. 3, 53 (1991); R. C. Steele, G. R. Walker, and N. G. Walker, IEEE Photon. Technol. Lett. 3, 545 (1991).
[CrossRef]

1959 (1)

L. Mandel, Proc. Phys. Soc. London 74, 233 (1959).
[CrossRef]

1957 (1)

K. Shimoda, G. Takahashi, and C. H. Townes, Phys. Soc. Jpn. 12, 686 (1957).
[CrossRef]

1944 (1)

K. Levenberg, Appl. Math. 2, 164 (1944); D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).
[CrossRef]

1928 (1)

J. B. Johnson, Phys. Rev. 32, 97 (1928); H. Nyquist, Phys. Rev. 32, 110 (1928).
[CrossRef]

Johnson, J. B.

J. B. Johnson, Phys. Rev. 32, 97 (1928); H. Nyquist, Phys. Rev. 32, 110 (1928).
[CrossRef]

Levenberg, K.

K. Levenberg, Appl. Math. 2, 164 (1944); D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).
[CrossRef]

Li, T.

T. Li and M. C. Teich, Electron. Lett. 27, 698 (1991); P. Diament and M. C. Teich, IEEE J. Quantum Electron. 28, 1325 (1992); T. Li and M. C. Teich, IEEE J. Quantum Electron. 29, 2568 (1993).
[CrossRef]

Livas, J. C.

J. C. Livas, in Optical Fiber Communication, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD-4.

Mandel, L.

L. Mandel, Proc. Phys. Soc. London 74, 233 (1959).
[CrossRef]

Personick, S. D.

S. D. Personick, Bell Syst. Tech. J. 52, 117 (1973); L. G. Kazovsky and O. K. Tonguz, IEEE Photon. Technol. Lett. 3, 53 (1991); R. C. Steele, G. R. Walker, and N. G. Walker, IEEE Photon. Technol. Lett. 3, 545 (1991).
[CrossRef]

Shimoda, K.

K. Shimoda, G. Takahashi, and C. H. Townes, Phys. Soc. Jpn. 12, 686 (1957).
[CrossRef]

Takahashi, G.

K. Shimoda, G. Takahashi, and C. H. Townes, Phys. Soc. Jpn. 12, 686 (1957).
[CrossRef]

Teich, M. C.

T. Li and M. C. Teich, Electron. Lett. 27, 698 (1991); P. Diament and M. C. Teich, IEEE J. Quantum Electron. 28, 1325 (1992); T. Li and M. C. Teich, IEEE J. Quantum Electron. 29, 2568 (1993).
[CrossRef]

Townes, C. H.

K. Shimoda, G. Takahashi, and C. H. Townes, Phys. Soc. Jpn. 12, 686 (1957).
[CrossRef]

Appl. Math. (1)

K. Levenberg, Appl. Math. 2, 164 (1944); D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).
[CrossRef]

Bell Syst. Tech. J. (1)

S. D. Personick, Bell Syst. Tech. J. 52, 117 (1973); L. G. Kazovsky and O. K. Tonguz, IEEE Photon. Technol. Lett. 3, 53 (1991); R. C. Steele, G. R. Walker, and N. G. Walker, IEEE Photon. Technol. Lett. 3, 545 (1991).
[CrossRef]

Electron. Lett. (1)

T. Li and M. C. Teich, Electron. Lett. 27, 698 (1991); P. Diament and M. C. Teich, IEEE J. Quantum Electron. 28, 1325 (1992); T. Li and M. C. Teich, IEEE J. Quantum Electron. 29, 2568 (1993).
[CrossRef]

Phys. Rev. (1)

J. B. Johnson, Phys. Rev. 32, 97 (1928); H. Nyquist, Phys. Rev. 32, 110 (1928).
[CrossRef]

Phys. Soc. Jpn. (1)

K. Shimoda, G. Takahashi, and C. H. Townes, Phys. Soc. Jpn. 12, 686 (1957).
[CrossRef]

Proc. Phys. Soc. London (1)

L. Mandel, Proc. Phys. Soc. London 74, 233 (1959).
[CrossRef]

Other (1)

J. C. Livas, in Optical Fiber Communication, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), postdeadline paper PD-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optically preamplified receiver: BPF, bandpass filter.

Fig. 2
Fig. 2

Probability distribution of the thermal circuit noise expressed as noise-equivalent optical power (circles) and a Gaussian fit.

Fig. 3
Fig. 3

(a) Probability distribution of ASE (circles) and a degenerate Bose–Einstein fit. (b) Probability distribution of ASE (circles), a Gaussian fit, and a Poisson fit.

Fig. 4
Fig. 4

Photon distributions of 0’s and 1’s without thermal circuit noise, n¯=1026, g=15.05, 135 photons/bit.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

pBEm=exp-Em/kBTm exp-Em/kBT.
n¯=1expω/kBT-1,
pBEn¯,m=n¯m1+n¯1+m.
pBEn¯,g,m=Γm+gΓm+1Γg1+1n¯-m1+n¯-g,

Metrics