Abstract

We have studied the influence of cascaded second-order effects on the spectral density of a second-harmonic pulse generated in thin KDP and β-barium borate crystals by an intense femtosecond pulse. A noticeable evolution of spectral density is recorded for any value of phase mismatch. This evolution is in good agreement with the solution of the nonlinear propagation equation and allows a simple direct measurement of the effective susceptibility of the studied crystals.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Ostrowsky, JETP Lett. 5, 272 (1967).
  2. J.-M. R. Thomas and J.-P. E. Taran, Opt. Commun. 4, 329 (1972).
    [CrossRef]
  3. Y. Baerk, R. Shiek, and G. I. Stegeman, Opt. Lett. 20, 2168 (1995).
    [CrossRef]
  4. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, Opt. Lett. 22, 274 (1997).
    [CrossRef] [PubMed]
  5. M. L. Sundheimer, Ch. Bosshard, E. W. Van Stryland, G. I. Stegeman, and J. D. Bierlein, Opt. Lett. 18, 1397 (1993).
    [CrossRef] [PubMed]
  6. G. Toci, D. McGraw, R. Pini, R. Salimbini, and M. Vannini, Opt. Lett. 20, 1547 (1995).
    [CrossRef] [PubMed]
  7. F. Hache, A. Zebulon, G. Gallot, and G. M. Gale, Opt. Lett. 20, 1556 (1995).
    [CrossRef] [PubMed]
  8. R. Danielius, A. Dubietis, and A. Piskarkas, Opt. Lett. 20, 1521 (1995).
    [CrossRef] [PubMed]
  9. R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse, and F. Hache, Opt. Lett. 22, 268 (1997).
    [CrossRef]
  10. S. A. Akhmanov, V. A. Vyslouck, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992), Chap. 3, pp. 137–149.
  11. N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, Opt. Spectrosc. 66, 806 (1989).
  12. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  13. J. T. Manassah and O. R. Cockings, Opt. Lett. 12, 1005 (1987).
    [CrossRef] [PubMed]

1997 (2)

1995 (4)

1993 (1)

1989 (1)

N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, Opt. Spectrosc. 66, 806 (1989).

1987 (1)

1972 (1)

J.-M. R. Thomas and J.-P. E. Taran, Opt. Commun. 4, 329 (1972).
[CrossRef]

1967 (1)

L. A. Ostrowsky, JETP Lett. 5, 272 (1967).

Akhmanov, S. A.

S. A. Akhmanov, V. A. Vyslouck, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992), Chap. 3, pp. 137–149.

Asobe, M.

Baerk, Y.

Belashenkov, N. R.

N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, Opt. Spectrosc. 66, 806 (1989).

Bierlein, J. D.

Bosshard, Ch.

Chirkin, A. S.

S. A. Akhmanov, V. A. Vyslouck, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992), Chap. 3, pp. 137–149.

Cockings, O. R.

Danielius, R.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

Dubietis, A.

Ducasse, A.

Freysz, E.

Gagarskii, S. V.

N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, Opt. Spectrosc. 66, 806 (1989).

Gale, G. M.

Gallot, G.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

Hache, F.

Inochkin, M. V.

N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, Opt. Spectrosc. 66, 806 (1989).

Itoh, H.

Ivanov, A.

Kaino, T.

Maleck Rassoul, R.

Manassah, J. T.

McGraw, D.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

Ostrowsky, L. A.

L. A. Ostrowsky, JETP Lett. 5, 272 (1967).

Pini, R.

Piskarkas, A.

Salimbini, R.

Shiek, R.

Stegeman, G. I.

Sundheimer, M. L.

Taran, J.-P. E.

J.-M. R. Thomas and J.-P. E. Taran, Opt. Commun. 4, 329 (1972).
[CrossRef]

Thomas, J.-M. R.

J.-M. R. Thomas and J.-P. E. Taran, Opt. Commun. 4, 329 (1972).
[CrossRef]

Toci, G.

Van Stryland, E. W.

Vannini, M.

Vyslouck, V. A.

S. A. Akhmanov, V. A. Vyslouck, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992), Chap. 3, pp. 137–149.

Yokohama, I.

Zebulon, A.

JETP Lett. (1)

L. A. Ostrowsky, JETP Lett. 5, 272 (1967).

Opt. Commun. (1)

J.-M. R. Thomas and J.-P. E. Taran, Opt. Commun. 4, 329 (1972).
[CrossRef]

Opt. Lett. (8)

Opt. Spectrosc. (1)

N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, Opt. Spectrosc. 66, 806 (1989).

Other (2)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

S. A. Akhmanov, V. A. Vyslouck, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992), Chap. 3, pp. 137–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Experimental variation of the SHSD generated in a KDP crystal for different values of I10. The spectra were recorded under different conditions. (a) and (b) were recorded close to the phase-matching condition.(a) I10=50 GW/cm2, (b) I10=200 GW/cm2. Solid and dashed curves, theoretical evolution computed according to Eq.  (3) for Δk=-3 cm-1. (c) and (d) were recorded in the center of the beam at low Δ and high ° intensities. The theoretical evolution was computed according to Eq.  (3) at low (100kW/cm2; dashed curves) and high (50GW/cm2; solid curves) intensities. (e) For a fixed phase-matching condition spectra was recorded in the center of the beam ° and toward the edge Δ. The intensity in the center of the beam is equal to 100 GW/cm2. (f) For a fixed phase-mismatch condition spectra were recorded in the center of the beam and for increasing power density of the FF pulse from 50 ° to 260 GW/cm2 Δ. Theoretical evolution was computed according to Eq.  (3) at high 260GW/cm2 and low 50GW/cm2 intensities.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A1z+1u1A1t=-iγ1A2A1* expiΔkz,
A2z+1u2A2t=-iγ2A12 exp-iΔkz,
S2Ω,z=γ2z2-+Aˆ10Ω-ΩAˆ10ΩdΩ2×sin c2z2Δu-1Ω-Δk2+8γ1γ2I1001/2,

Metrics