Abstract

The counterpropagating waves in a single traveling-wave cavity can be partially coupled by means of a small perturbation such as a notch. When it is side coupled to a waveguide, this single cavity yields a general second-order (Chebyshev) reflection response in the waveguide, which is useful for narrow-bandwidth reflecting applications. In a different application, the cavity amplifies small reflections induced by external perturbations, thus finding use in ultrafine sensing. Amplification factors as great as 1012 are predicted for the highest-Q microsphere resonators. The analytic theory of these devices is presented.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ring modulators with enhanced efficiency based on standing-wave operation on a field-matched, interdigitated p-n junction

Fabio Pavanello, Xiaoge Zeng, Mark T. Wade, and Miloš A. Popović
Opt. Express 24(24) 27433-27443 (2016)

Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters

Miloš A. Popović, Christina Manolatou, and Michael R. Watts
Opt. Express 14(3) 1208-1222 (2006)

Waveguide self-coupling based reconfigurable resonance structure for optical filtering and delay

Linjie Zhou, Tong Ye, and Jianping Chen
Opt. Express 19(9) 8032-8044 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription