Abstract

We present a new noninvasive technique for measuring the spatial variation of the zero-dispersion wavelength λ0 in single-mode fibers. This technique uses low-power continuous-wave lasers and is simple to implement. When applying this technique to dispersion-shifted fibers, we can resolve subnanometer fluctuations in λ0 with a potential spatial resolution of better than 100 m. We also discuss and show the limits of this and other techniques that arise from polarization-mode dispersion in the fibers.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohashi and M. Tateda, Electron. Lett. 29, 426 (1993).
    [CrossRef]
  2. Y. Suetsugu, T. Kato, T. Okuno, and M. Nishimura, IEEE Photon. Technol. Lett. 7, 1459 (1995).
    [CrossRef]
  3. S. Nishi and M. Saruwatari, Electron. Lett. 32, 579 (1996).
    [CrossRef]
  4. M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
    [CrossRef]
  5. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 21, 1724 (1996).
    [CrossRef] [PubMed]
  6. K. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
    [CrossRef]
  7. K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
    [CrossRef]
  8. A. M. J. Huiser, P. van Toorn, and H. A. Ferwerda, Optik 47, 1 (1977).
  9. K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
    [CrossRef]

1997 (1)

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

1996 (2)

1995 (1)

Y. Suetsugu, T. Kato, T. Okuno, and M. Nishimura, IEEE Photon. Technol. Lett. 7, 1459 (1995).
[CrossRef]

1993 (1)

M. Ohashi and M. Tateda, Electron. Lett. 29, 426 (1993).
[CrossRef]

1992 (2)

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

1978 (1)

K. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

1977 (1)

A. M. J. Huiser, P. van Toorn, and H. A. Ferwerda, Optik 47, 1 (1977).

Eiselt, M.

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

Ferwerda, H. A.

A. M. J. Huiser, P. van Toorn, and H. A. Ferwerda, Optik 47, 1 (1977).

Hill, K.

K. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Huiser, A. M. J.

A. M. J. Huiser, P. van Toorn, and H. A. Ferwerda, Optik 47, 1 (1977).

Inoue, K.

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

Johnson, D. C.

K. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Jopson, R. M.

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

Kato, T.

Y. Suetsugu, T. Kato, T. Okuno, and M. Nishimura, IEEE Photon. Technol. Lett. 7, 1459 (1995).
[CrossRef]

Kawasaki, B. S.

K. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

MacDonald, R. I.

K. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Mamyshev, P. V.

Mollenauer, L. F.

Neubelt, M. J.

Nishi, S.

S. Nishi and M. Saruwatari, Electron. Lett. 32, 579 (1996).
[CrossRef]

Nishimura, M.

Y. Suetsugu, T. Kato, T. Okuno, and M. Nishimura, IEEE Photon. Technol. Lett. 7, 1459 (1995).
[CrossRef]

Ohashi, M.

M. Ohashi and M. Tateda, Electron. Lett. 29, 426 (1993).
[CrossRef]

Okuno, T.

Y. Suetsugu, T. Kato, T. Okuno, and M. Nishimura, IEEE Photon. Technol. Lett. 7, 1459 (1995).
[CrossRef]

Saruwatari, M.

S. Nishi and M. Saruwatari, Electron. Lett. 32, 579 (1996).
[CrossRef]

Stolen, R. H.

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

Suetsugu, Y.

Y. Suetsugu, T. Kato, T. Okuno, and M. Nishimura, IEEE Photon. Technol. Lett. 7, 1459 (1995).
[CrossRef]

Tateda, M.

M. Ohashi and M. Tateda, Electron. Lett. 29, 426 (1993).
[CrossRef]

van Toorn, P.

A. M. J. Huiser, P. van Toorn, and H. A. Ferwerda, Optik 47, 1 (1977).

Electron. Lett. (2)

M. Ohashi and M. Tateda, Electron. Lett. 29, 426 (1993).
[CrossRef]

S. Nishi and M. Saruwatari, Electron. Lett. 32, 579 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Inoue, IEEE J. Quantum Electron. 28, 883 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Suetsugu, T. Kato, T. Okuno, and M. Nishimura, IEEE Photon. Technol. Lett. 7, 1459 (1995).
[CrossRef]

J. Appl. Phys. (1)

K. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

J. Lightwave Technol. (2)

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

M. Eiselt, R. M. Jopson, and R. H. Stolen, J. Lightwave Technol. 15, 135 (1997).
[CrossRef]

Opt. Lett. (1)

Optik (1)

A. M. J. Huiser, P. van Toorn, and H. A. Ferwerda, Optik 47, 1 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used to measure fluctuations in λ0. The lasers are scanned at a constant detuning, and the FWM peaks are recorded with either an optical spectrum analyzer (OSA) or a lock-in amplifier. BP, bandpass; Pol.’s, polarizers; ECL1, ECL2, tunable external-cavity lasers; DSF, dispersion-shifted fiber.

Fig. 2
Fig. 2

(a), (c), (e) Experimental FWM tuning curves measured at a constant detuning Δλ for the anti-Stokes peak only; similar results were obtained for the Stokes peak. (b), (d), (f) Expected theoretical curves if one assumes a constant λ0. The extent of each experimental curve corresponds approximately to the magnitude of the fluctuation in λ0 along the fiber length.

Fig. 3
Fig. 3

(a), (b) Calculated λ0z distribution for fiber spools of 6.7 (fiber #2 in Fig. 2) and 25.4 km; the two solid curves in the longer spool (b) correspond to inversions derived from FWM measurements carried out from each direction. The points show λ0 measured with destructive techniques and thus represent the average λ0 over the plotted range. (c), (d) Experimental FWM tuning curves and curves calculated with the λ0z of (a) and (b).

Fig. 4
Fig. 4

FWM tuning curves for two 25-km fiber spools with average PMD of (a)–(c) 0.03 ps/km1/2 and (d)–(f) 0.15 ps/km1/2 for both parallel and perpendicular polarizations. For small Δλ the polarization-selection rules are preserved in both fibers, but this is not the case when Δλ is large in fibers with high PMD. Therefore the relative polarization of each laser field is lost after some propagation distance along the fiber.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IFWM0Ldzexpi0zΔβzdz2.
Δβ-2πcΔλλ22dDdλλ1-λ0,
IFWMλ10Ldzexpiϕzexp-iqz2,q=κλ1,  κ=2πcΔλ/λ22dD/dλ,ϕz=κ0zλ0ydy.
Iq0Ldzexpiϕzexp-iqz-αz2.

Metrics