Abstract

For the first time to the authors’ knowledge, an integrated optical distributed Bragg reflector laser with a fixed photorefractive grating in LiNbO3 is demonstrated. Sample preparation, grating fabrication, and laser characteristics are reported. The device is pumped by a fiber pigtailed laser diode λp1480 nm through the Bragg grating in a double-pass configuration, yielding an emission in the backward direction at λ=1531.7 nm. The laser threshold is 40  mW; as much as 5  mW of output power has been obtained at 110  mW of launched pump power in cw operation.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
    [CrossRef]
  2. J. Söchtig, H. Schütz, R. Widmer, H. W. Lehmann, and R. Gross, in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 97 (1994).
  3. J. Hübner, P. Varming, and M. Kristensen, Electron. Lett. 33, 139 (1997).
    [CrossRef]
  4. J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
    [CrossRef]
  5. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
    [CrossRef]

1997 (2)

J. Hübner, P. Varming, and M. Kristensen, Electron. Lett. 33, 139 (1997).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

1995 (1)

J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Amodei, J. J.

J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Baumann, I.

J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

Breer, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Buse, K.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Gross, R.

J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

J. Söchtig, H. Schütz, R. Widmer, H. W. Lehmann, and R. Gross, in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 97 (1994).

Hübner, J.

J. Hübner, P. Varming, and M. Kristensen, Electron. Lett. 33, 139 (1997).
[CrossRef]

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Krätzig, E.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Kristensen, M.

J. Hübner, P. Varming, and M. Kristensen, Electron. Lett. 33, 139 (1997).
[CrossRef]

Lehmann, H. W.

J. Söchtig, H. Schütz, R. Widmer, H. W. Lehmann, and R. Gross, in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 97 (1994).

Peithmann, K.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Schütz, H.

J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

J. Söchtig, H. Schütz, R. Widmer, H. W. Lehmann, and R. Gross, in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 97 (1994).

Söchtig, J.

J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

J. Söchtig, H. Schütz, R. Widmer, H. W. Lehmann, and R. Gross, in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 97 (1994).

Sohler, W.

J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

Staebler, D. L.

J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Varming, P.

J. Hübner, P. Varming, and M. Kristensen, Electron. Lett. 33, 139 (1997).
[CrossRef]

Widmer, R.

J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

J. Söchtig, H. Schütz, R. Widmer, H. W. Lehmann, and R. Gross, in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 97 (1994).

Appl. Phys. Lett. (1)

J. J. Amodei and D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Electron. Lett. (2)

J. Söchtig, R. Gross, I. Baumann, W. Sohler, H. Schütz, and R. Widmer, Electron. Lett. 31, 551 (1995).
[CrossRef]

J. Hübner, P. Varming, and M. Kristensen, Electron. Lett. 33, 139 (1997).
[CrossRef]

Phys. Rev. B (1)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, Phys. Rev. B 56, 1225 (1997).
[CrossRef]

Other (1)

J. Söchtig, H. Schütz, R. Widmer, H. W. Lehmann, and R. Gross, in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 97 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic structure of the Ti:Er:LiNbO3 DBR waveguide laser with a photorefractive grating in the Fe-doped section. HR, highly reflecting dielectric mirror; AR, antireflection coating.

Fig. 2
Fig. 2

Transmission of a fixed photorefractive grating versus wavelength.

Fig. 3
Fig. 3

Power characteristics of the DBR laser. Inset, axial mode spectrum (TE polarized).

Fig. 4
Fig. 4

Output power of the pigtailed and packaged DBR laser and reflectivity of the Bragg grating as function of time (filled squares, measured response; dashed curve, fitted exponential decay).

Metrics