Abstract

A microsphere or resonator that is side coupled to an incident optical beam induces a phase response in the beam. In the so-called overcoupled regime, the amplitude of the incident beam remains unmodulated, whereas the phase goes through a shift of π at resonance. This shift is insensitive to the details of the coupling geometry or the resonant mode. In conjunction with an interferometer, the phase response can be used to switch the beam between two well-defined outputs, thus offering a robust means of deploying microspheres and other microresonators in practical photonic devices.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
    [CrossRef]
  2. B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
    [CrossRef]
  3. S. Arnold, C. T. Liu, W. B. Whitten, and J. M. Ramsey, Opt. Lett. 16, 420 (1991).
    [CrossRef] [PubMed]
  4. A. B. Matsko, S. P. Vyatchanin, H. Mabuchi, and H. J. Kimble, Phys. Lett. A 192, 175 (1994).
    [CrossRef]
  5. F. Treussart, J. Hare, L. Collot, V. Lefevre, D. S. Weiss, V. Sandoghdar, J. M. Raimond, and S. Haroch, Opt. Lett. 19, 1651 (1994).
    [CrossRef] [PubMed]
  6. M. I. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef] [PubMed]
  7. M. I. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
    [CrossRef]
  8. G. Griffel, S. Arnold, D. Taskent, A. Serpenguzel, J. Connolly, and N. Morris, Opt. Lett. 21, 695 (1996).
    [CrossRef] [PubMed]
  9. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
    [CrossRef]
  10. S. T. Chu and S. K. Chaudhuri, J. Lightwave Technol. 7, 2033 (1989).
    [CrossRef]

1998 (1)

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

1996 (2)

1994 (3)

M. I. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

A. B. Matsko, S. P. Vyatchanin, H. Mabuchi, and H. J. Kimble, Phys. Lett. A 192, 175 (1994).
[CrossRef]

F. Treussart, J. Hare, L. Collot, V. Lefevre, D. S. Weiss, V. Sandoghdar, J. M. Raimond, and S. Haroch, Opt. Lett. 19, 1651 (1994).
[CrossRef] [PubMed]

1991 (2)

S. Arnold, C. T. Liu, W. B. Whitten, and J. M. Ramsey, Opt. Lett. 16, 420 (1991).
[CrossRef] [PubMed]

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

1989 (1)

S. T. Chu and S. K. Chaudhuri, J. Lightwave Technol. 7, 2033 (1989).
[CrossRef]

Arnold, S.

Chaudhuri, S. K.

S. T. Chu and S. K. Chaudhuri, J. Lightwave Technol. 7, 2033 (1989).
[CrossRef]

Chu, S. T.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

S. T. Chu and S. K. Chaudhuri, J. Lightwave Technol. 7, 2033 (1989).
[CrossRef]

Collot, L.

Connolly, J.

Foresi, J.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Gorodetsky, M. I.

Greene, W.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Griffel, G.

Hare, J.

Haroch, S.

Haus, H. A.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Ilchenko, V. S.

Ippen, E.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Kimble, H. J.

A. B. Matsko, S. P. Vyatchanin, H. Mabuchi, and H. J. Kimble, Phys. Lett. A 192, 175 (1994).
[CrossRef]

Kimerling, L.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Lefevre, V.

Little, B. E.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Liu, C. T.

Mabuchi, H.

A. B. Matsko, S. P. Vyatchanin, H. Mabuchi, and H. J. Kimble, Phys. Lett. A 192, 175 (1994).
[CrossRef]

Matsko, A. B.

A. B. Matsko, S. P. Vyatchanin, H. Mabuchi, and H. J. Kimble, Phys. Lett. A 192, 175 (1994).
[CrossRef]

Morris, N.

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Raimond, J. M.

Ramsey, J. M.

Sandoghdar, V.

Savchenkov, A. A.

Serpenguzel, A.

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Taskent, D.

Thoen, E.

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Treussart, F.

Vyatchanin, S. P.

A. B. Matsko, S. P. Vyatchanin, H. Mabuchi, and H. J. Kimble, Phys. Lett. A 192, 175 (1994).
[CrossRef]

Weiss, D. S.

Whitten, W. B.

IEEE J. Quantum Electron. (1)

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, H. A. Haus, E. Ippen, S. T. Chu, L. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

J. Lightwave Technol. (2)

S. T. Chu and S. K. Chaudhuri, J. Lightwave Technol. 7, 2033 (1989).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Opt. Commun. (1)

M. I. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

Opt. Lett. (4)

Phys. Lett. A (1)

A. B. Matsko, S. P. Vyatchanin, H. Mabuchi, and H. J. Kimble, Phys. Lett. A 192, 175 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Microsphere resonator side coupled to an optical waveguide. (b) Microsphere used in a track-changing interferometer. At resonance the input beam is diverted to the drop port, whereas off resonance it exits the through port. The sphere acts as a mode converter, converting the even (symmetric) mode into the odd (antisymmetric) mode (or vice versa).

Fig. 2
Fig. 2

Instantaneous electric-field pattern in a ring resonator interferometer. An optical wave launched in the filter arm interacts with the resonator and is recombined with a reference wave in a Y junction at the output. On resonance, the π-shift picked up by the wave in one arm of the filter leads to the creation of the odd (higher-order) mode, which is subsequently cut off and radiated in the Y junction.

Fig. 3
Fig. 3

Spectral response of the microsphere interferometer depicted in Fig.  2 observed in the single-mode output of the Y junction. The sharp nulls in the spectra correspond to the resonant wavelengths of the ring, where power is radiated in the Y junction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T=AoutAin=AΔωexp-jθΔω,
AΔω=Δω2+1/τl-1/τe2Δω2+1/τl+1/τe2,
θΔω=π-arctanΔωτeτlτl-τe-arctanΔωτeτlτl+τe,  τl>τe,  θΔω=arctanΔωτeτlτe-τl-arctanΔωτeτlτe+τl,  τl<τe.

Metrics