Abstract

A video laser speckle imaging technique yields images with contrast based on the mechanical properties of a tissue. Fluctuations of laser speckle patterns induced by acoustically driving the tissue at various frequencies in the 0–30-Hz range encode the mechanical strain of the tissue. At each acoustic frequency and within the camera acquisition time, each camera pixel integrates a temporally fluctuating speckle intensity whose variance encodes the mechanical strain in response to the acoustic modulation. The magnitude and the frequency dependence of this strain provide mechanical information about the tissue and are the contrast mechanism for images.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Aizu, O. Kouji, T. Sugita, T. Yamamoto, N. Takai, and T. Asakura, Appl. Opt. 31, 3020 (1992).
    [CrossRef] [PubMed]
  2. J. D. Briers, Opt. Eng. 32, 277 (1993).
    [CrossRef]
  3. D. A. Zimnyakov, V. V. Tuchin, and A. A. Mishin, Appl. Opt. 36, 5594 (1997).
    [CrossRef] [PubMed]
  4. E. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, Opt. Lett. 22, 64 (1997).
    [CrossRef] [PubMed]
  5. D. A. Boas, G. Nishimura, and A. G. Yodh, Proc. SPIE 2979, 468 (1997).
    [CrossRef]
  6. J. C. Shelton and D. M. Katz, J. Med. Eng. Technol. 15, 209 (1991).
    [CrossRef] [PubMed]
  7. J. F. Orr and J. C. Shelton, Optical Measurement Methods in Biomechanics (Chapman & Hall, London, 1997).
  8. B. Eliasson and F. M. Mottier, J. Opt. Soc. Am. 61, 559 (1971).
    [CrossRef]
  9. S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms (Princeton U. Press, Princeton, N.J., 1976).
  10. J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–76.
  11. M. Lehmann, Opt. Eng. 36, 1162 (1997).
    [CrossRef]

1997 (4)

1993 (1)

J. D. Briers, Opt. Eng. 32, 277 (1993).
[CrossRef]

1992 (1)

1991 (1)

J. C. Shelton and D. M. Katz, J. Med. Eng. Technol. 15, 209 (1991).
[CrossRef] [PubMed]

1971 (1)

Aizu, Y.

Asakura, T.

Biggs, W. D.

S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms (Princeton U. Press, Princeton, N.J., 1976).

Boas, D. A.

D. A. Boas, G. Nishimura, and A. G. Yodh, Proc. SPIE 2979, 468 (1997).
[CrossRef]

Briers, J. D.

J. D. Briers, Opt. Eng. 32, 277 (1993).
[CrossRef]

Chen, E. Z.

Currey, J. D.

S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms (Princeton U. Press, Princeton, N.J., 1976).

Dave, D.

Eliasson, B.

Goodman, J. W.

J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–76.

Gosline, J. M.

S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms (Princeton U. Press, Princeton, N.J., 1976).

Katz, D. M.

J. C. Shelton and D. M. Katz, J. Med. Eng. Technol. 15, 209 (1991).
[CrossRef] [PubMed]

Kouji, O.

Lehmann, M.

M. Lehmann, Opt. Eng. 36, 1162 (1997).
[CrossRef]

Milner, T. E.

Mishin, A. A.

Mottier, F. M.

Nelson, J. S.

Nishimura, G.

D. A. Boas, G. Nishimura, and A. G. Yodh, Proc. SPIE 2979, 468 (1997).
[CrossRef]

Orr, J. F.

J. F. Orr and J. C. Shelton, Optical Measurement Methods in Biomechanics (Chapman & Hall, London, 1997).

Shelton, J. C.

J. C. Shelton and D. M. Katz, J. Med. Eng. Technol. 15, 209 (1991).
[CrossRef] [PubMed]

J. F. Orr and J. C. Shelton, Optical Measurement Methods in Biomechanics (Chapman & Hall, London, 1997).

Sugita, T.

Takai, N.

Tuchin, V. V.

Wainwright, S. A.

S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms (Princeton U. Press, Princeton, N.J., 1976).

Yamamoto, T.

Yodh, A. G.

D. A. Boas, G. Nishimura, and A. G. Yodh, Proc. SPIE 2979, 468 (1997).
[CrossRef]

Zimnyakov, D. A.

Appl. Opt. (2)

J. Med. Eng. Technol. (1)

J. C. Shelton and D. M. Katz, J. Med. Eng. Technol. 15, 209 (1991).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Opt. Eng. (2)

J. D. Briers, Opt. Eng. 32, 277 (1993).
[CrossRef]

M. Lehmann, Opt. Eng. 36, 1162 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

D. A. Boas, G. Nishimura, and A. G. Yodh, Proc. SPIE 2979, 468 (1997).
[CrossRef]

Other (3)

S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms (Princeton U. Press, Princeton, N.J., 1976).

J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–76.

J. F. Orr and J. C. Shelton, Optical Measurement Methods in Biomechanics (Chapman & Hall, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. A CCD camera views the speckle scattered from the sample. A function generator controls a piezoelectric actuator, which mechanically drives the sample at a specific frequency of strain.

Fig. 2
Fig. 2

Static and dynamic single-frame speckle images of bovine muscle with and without cross linking by glutaraldehyde. The native tissue region is at the left, and the cross-linked region is at the right. Images were enhanced by edge enhancement (Sobel filter) to permit better discrimination of the speckle. Field of view, 3.3 cm×4 cm. A, Static image (no acoustic modulation); B, dynamic image (30-Hz acoustic modulation).

Fig. 3
Fig. 3

Probability distributions for normalized pixel intensities I/I for a static image and for dynamic images comparing native and cross-linked regions of muscle (from Fig.  2). The minimum and maximum pixel intensity values are expressed as 0 and 1, respectively.

Fig. 4
Fig. 4

A, Image gray value G versus frequency of acoustic modulation at 10-ms camera integration time. Native and cross-linked chicken skins. B, G versus camera integration time at 30-Hz modulation. Native sample only.

Fig. 5
Fig. 5

Image gray value G of native and cross-linked chicken skin versus normalized parameter fTi (dimensionless), where f is the strain frequency s-1 and Ti is the camera integration time (s). At higher fTi values the intrapixel diversity of temporally varying speckle intensities maximizes and is integrated by the camera to yield a pixel value that approaches the mean value I. Therefore the interpixel diversity within a homogeneous tissue region decreases and the G value maximizes. Open circles, Gf native sample from Fig.  4A. Open diamonds, GTi native sample from Fig.  4B. Filled diamonds, Gf cross linked from Fig.  4A.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G=1-σ/I.

Metrics