Abstract

We discuss the measurement of noise-initiated Brillouin scattered power in optical fibers and its application to distributed sensing systems. In particular, we consider the use of Brillouin scattering in the nonlinear regime, demonstrating a novel processing technique that compensates for the nonlinear growth of the scattered signals. The signal-to-noise ratio performance of this technique is evaluated, highlighting the importance of the noise contributed by the random statistics of the scattered field and yielding the conditions for optimum system operation.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
    [CrossRef]
  2. T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
    [CrossRef]
  3. D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
    [CrossRef]
  4. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, Opt. Lett. 22, 787 (1997).
    [CrossRef] [PubMed]
  5. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, IEEE Photon. Technol. Lett. 9, 979 (1997).
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989), p. 269.
  7. P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
    [CrossRef]
  8. T. von Foerster and R. J. Glauber, Phys. Rev. A 3, 1484 (1971).
    [CrossRef]
  9. R. W. Boyd, K. Razazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
    [CrossRef] [PubMed]
  10. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), p. 708.

1997 (2)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, Opt. Lett. 22, 787 (1997).
[CrossRef] [PubMed]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

1996 (1)

P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
[CrossRef]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

1990 (1)

R. W. Boyd, K. Razazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

1989 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

1971 (1)

T. von Foerster and R. J. Glauber, Phys. Rev. A 3, 1484 (1971).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989), p. 269.

Boyd, R. W.

R. W. Boyd, K. Razazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, Opt. Lett. 22, 787 (1997).
[CrossRef] [PubMed]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

Glauber, R. J.

T. von Foerster and R. J. Glauber, Phys. Rev. A 3, 1484 (1971).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, Opt. Lett. 22, 787 (1997).
[CrossRef] [PubMed]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

Jackson, D. A.

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), p. 708.

Narum, P.

R. W. Boyd, K. Razazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Newson, T. P.

P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
[CrossRef]

Pannel, C. N.

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, Opt. Lett. 22, 787 (1997).
[CrossRef] [PubMed]

Razazewski, K.

R. W. Boyd, K. Razazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, Opt. Lett. 22, 787 (1997).
[CrossRef] [PubMed]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

von Foerster, T.

T. von Foerster and R. J. Glauber, Phys. Rev. A 3, 1484 (1971).
[CrossRef]

Wait, P. C.

P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), p. 708.

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

J. Lightwave Technol. (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Opt. Commun. (1)

P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

T. von Foerster and R. J. Glauber, Phys. Rev. A 3, 1484 (1971).
[CrossRef]

R. W. Boyd, K. Razazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Other (2)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), p. 708.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989), p. 269.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Brillouin spectra for various values of G.

Fig. 2
Fig. 2

Experimental values of Stokes power PS, anti-Stokes power PA, linearized Brillouin power PBlin, and linearized Brillouin power approximated with relation  (5), PBlin (app), for several values of G. The curves are theoretical fits from Eqs.  (2), (3), (4), and (5).

Fig. 3
Fig. 3

SNR of the linearized Brillouin power as a function of G for several detection bandwidths B. F, field statistics; S, shot; C, circuit.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G=gBPpLeff/2Aeff,
PSG=ωSn+1/2γGeGI0G-I1G,
PAG=ωAn/2γGe-GI0G+I1G,
PBlinG=ωLn/2γG,
PBapplinPSPA lnPS/PA/PS-PA.
ΦSω=ωSn+1exp2γ/22Gγ/22+ω-ωS2-1.
ΦAω=ωAn1-exp-2γ/22Gγ/22+ω-ωA2.
ΨS,Aω=R2PS,A2δω2π+R2Hω2-ΦS,Aω+ωΦS,Aωdω2π+eRg¯FPS,AHω2+R2NEP2Hω2,

Metrics