Abstract

We report the generation of simultaneous multiband mid-infrared laser output by use of periodically polled lithium niobate pumped by the 1.54-µm output from a KTP optical parametric oscillator. The multiband source is capable of producing three mid-infrared wavelengths ranging from 2.5 to 4 µm. In initial experiments we obtained output powers of 542  mW near 2.5 µm and 453  mW near 4 µm, with power conversion efficiencies of 30% and 25%, respectively. To the best of our knowledge, this is the first demonstration of this kind in the literature.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  2. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, Opt. Lett. 20, 52 (1995); L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, J. Opt. Soc. Am. B 12, 2101 (1995).
    [CrossRef] [PubMed]
  3. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
    [CrossRef]
  4. W. R. Bosenberg, A. Drobshoff, and L. E. Myers, in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 32.
  5. T. Chuang, R. Burnham, and R. B. Jones, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Boserberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 262.
  6. These tuning curves were calculated and created with a program called SNLO Nonlinear Optics from A. V. Smith of Sandia National Labsand Sellmeier equations from D. H. Jundt of Crystal Technology, Inc.

1995

1991

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Bosenberg, W. R.

W. R. Bosenberg, A. Drobshoff, and L. E. Myers, in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 32.

Burnham, R.

T. Chuang, R. Burnham, and R. B. Jones, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Boserberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 262.

Byer, R. L.

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, Opt. Lett. 20, 52 (1995); L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, J. Opt. Soc. Am. B 12, 2101 (1995).
[CrossRef] [PubMed]

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Chuang, T.

T. Chuang, R. Burnham, and R. B. Jones, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Boserberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 262.

Drobshoff, A.

W. R. Bosenberg, A. Drobshoff, and L. E. Myers, in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 32.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, Opt. Lett. 20, 52 (1995); L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, J. Opt. Soc. Am. B 12, 2101 (1995).
[CrossRef] [PubMed]

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Jones, R. B.

T. Chuang, R. Burnham, and R. B. Jones, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Boserberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 262.

Jundt, D. H.

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Magel, G. A.

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Miller, G. D.

Myers, L. E.

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, Opt. Lett. 20, 52 (1995); L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, J. Opt. Soc. Am. B 12, 2101 (1995).
[CrossRef] [PubMed]

W. R. Bosenberg, A. Drobshoff, and L. E. Myers, in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 32.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Smith, A. V.

These tuning curves were calculated and created with a program called SNLO Nonlinear Optics from A. V. Smith of Sandia National Labsand Sellmeier equations from D. H. Jundt of Crystal Technology, Inc.

Appl. Phys. Lett.

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).
[CrossRef]

Other

W. R. Bosenberg, A. Drobshoff, and L. E. Myers, in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 32.

T. Chuang, R. Burnham, and R. B. Jones, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Boserberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 262.

These tuning curves were calculated and created with a program called SNLO Nonlinear Optics from A. V. Smith of Sandia National Labsand Sellmeier equations from D. H. Jundt of Crystal Technology, Inc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layout of the multiband MIR laser source. M’s, mirrors. A-O, acousto-optic.

Fig. 2
Fig. 2

Calculated temperature-tuning curve and experimental data on the 32.3-µm period grating.

Fig. 3
Fig. 3

Calculated temperature curves and experimental data for all five grating periods at two temperature points.

Fig. 4
Fig. 4

Power performance of the multiband MIR source for both the signal and the idler waves.

Fig. 5
Fig. 5

Conversion efficiencies of the multiband MIR source for both the signal and the idler waves as a function of pump power and pump intensity.

Metrics