Abstract

We describe a simple method of obtaining optical sectioning in a conventional wide-field microscope by projecting a single-spatial-frequency grid pattern onto the object. Images taken at three spatial positions of the grid are processed in real time to produce optically sectioned images that are substantially similar to those obtained with confocal microscopes.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  2. T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).
  3. B. Neumann, Proc. SPIE 1139, 102 (1989).
    [CrossRef]
  4. C. G. Morgan, “Optical sensor for imaging an object,” U.S. patent5,381,236 (January10, 1995).
  5. A. B. Carlson, Communication Systems (McGraw-Hill, New York, 1988).
  6. P. A. Stokseth, J. Opt. Soc. Am. 59, 1314 (1969).
    [CrossRef]
  7. T. Wilson and R. Juškaitis, Bioimaging 3, 35 (1995).
    [CrossRef]

1995 (1)

T. Wilson and R. Juškaitis, Bioimaging 3, 35 (1995).
[CrossRef]

1989 (1)

B. Neumann, Proc. SPIE 1139, 102 (1989).
[CrossRef]

1969 (1)

Carlson, A. B.

A. B. Carlson, Communication Systems (McGraw-Hill, New York, 1988).

Juškaitis, R.

T. Wilson and R. Juškaitis, Bioimaging 3, 35 (1995).
[CrossRef]

Morgan, C. G.

C. G. Morgan, “Optical sensor for imaging an object,” U.S. patent5,381,236 (January10, 1995).

Neumann, B.

B. Neumann, Proc. SPIE 1139, 102 (1989).
[CrossRef]

Sheppard, C. J. R.

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Stokseth, P. A.

Wilson, T.

T. Wilson and R. Juškaitis, Bioimaging 3, 35 (1995).
[CrossRef]

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Bioimaging (1)

T. Wilson and R. Juškaitis, Bioimaging 3, 35 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. SPIE (1)

B. Neumann, Proc. SPIE 1139, 102 (1989).
[CrossRef]

Other (4)

C. G. Morgan, “Optical sensor for imaging an object,” U.S. patent5,381,236 (January10, 1995).

A. B. Carlson, Communication Systems (McGraw-Hill, New York, 1988).

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the optical arrangement.

Fig. 2
Fig. 2

Measured axial responses of the system.

Fig. 3
Fig. 3

(a) Autofocus image of lily pollen grain. The field size is 100 µm × 70 µm . (b) Conventional image of the lily pollen grain when the microscope is focused in a mid-depth plane.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( t ,   w ) = S ( t 0 ,   w 0 ) h 1 ( t 0 + t 1 ,   w 0 + w 1 ) × τ ( t 1 ,   w 1 ) h 2 ( t 1 + t ,   w 1 + w ) d t 1 d w 1 2 d t 0 d w 0 ,  
S ( t 0 ,   w 0 ) = 1 + m   cos   ( ν ˜ t 0 + ϕ 0 ) ,  
I ( t ,   w ) = I 0 + I c   cos   ϕ 0 + I s   sin   ϕ 0 ,  
I p = ( I 1 I 2 ) 2 + ( I 1 I 3 ) 2 + ( I 2 I 3 ) 2 1 / 2 ,
I p = I 1 + I 2   exp   j 2 π 3 + I 3   exp   4 π 3 ,  
I p ( t ,   w ) =   exp   v ˜ t 0   h 1 ( t 0 + t 1 ,   w 0 + w 1 ) × h 2 ( t 1 + t ,   w 1 + w ) d t 1 d w 2 d t 0 d w 0 .
I p =     P 1 ( ξ ,   η ) P 2 ( ξ ,   η ) P 1 * ( ξ v ˜ ,   η ) × P 2 * ( ξ v ˜ ,   η ) d ξ d   n ,
I p ( u ) = | g ( 2 u ,   v ˜ ) | ,  
g ( u ,   v ˜ ) = f ( v ˜ ) 2 J 1 [ u v ˜ ( 1 v ˜ / 2 ) ] [ u v ˜ ( 1 v ˜ / 2 ] ,
I p ( u ) 2 J 1 [ 2 u v ˜ ( 1 v ˜ / 2 ) ] [ 2 u v ˜ ( 1 v ˜ / 2 ) ] ,

Metrics