Abstract

We demonstrate that, by changing the altitude and the azimuth incident angles on the gratings of the conventional grating-pair compressor used in chirped-pulse amplification, an extra degree of freedom is added. This results in a continuous adjustment of second-, third-, and fourth-order dispersions, which allows one to compensate for those dispersions that originated in the expansor or in the amplifier medium as a result of material dispersion or self-phase modulation, even with small out-of-plane tilts of the expansor and compressor. Analytical calculations of the high-order dispersions introduced by this compressor and examples for a pulse with a central wavelength at 800  nm are presented.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
    [Crossref]
  2. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [Crossref]
  3. O. E. Martínez, IEEE J. Quantum Electron. QE-23, 59 (1987).
    [Crossref]
  4. O. E. Martínez, P. Thiagarajan, M. C. Marconi, and J. J. Roca, IEEE J. Quantum Electron. 25, 2124 (1989).
    [Crossref]
  5. M. D. Perry, T. Ditmire, and B. C. Stuart, Opt. Lett. 19, 2149 (1994).
    [Crossref] [PubMed]
  6. B. E. Lemoff and C. P. J. Barty, Opt. Lett. 18, 1651 (1993).
    [Crossref] [PubMed]
  7. O. E. Matrínez, J. P. Gordon, and R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
    [Crossref]
  8. M. A. Gil and J. M. Simon, Appl. Opt. 24, 2956 (1985).
    [Crossref]
  9. R. A. Depine and C. I. Valencia, Opt. Commun. 117, 223 (1995).
    [Crossref]

1995 (1)

R. A. Depine and C. I. Valencia, Opt. Commun. 117, 223 (1995).
[Crossref]

1994 (1)

1993 (1)

1989 (1)

O. E. Martínez, P. Thiagarajan, M. C. Marconi, and J. J. Roca, IEEE J. Quantum Electron. 25, 2124 (1989).
[Crossref]

1987 (1)

O. E. Martínez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[Crossref]

1985 (2)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[Crossref]

M. A. Gil and J. M. Simon, Appl. Opt. 24, 2956 (1985).
[Crossref]

1984 (1)

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

Barty, C. P. J.

Depine, R. A.

R. A. Depine and C. I. Valencia, Opt. Commun. 117, 223 (1995).
[Crossref]

Ditmire, T.

Fork, R. L.

Gil, M. A.

Gordon, J. P.

Lemoff, B. E.

Marconi, M. C.

O. E. Martínez, P. Thiagarajan, M. C. Marconi, and J. J. Roca, IEEE J. Quantum Electron. 25, 2124 (1989).
[Crossref]

Martínez, O. E.

O. E. Martínez, P. Thiagarajan, M. C. Marconi, and J. J. Roca, IEEE J. Quantum Electron. 25, 2124 (1989).
[Crossref]

O. E. Martínez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[Crossref]

Matrínez, O. E.

Mourou, G.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[Crossref]

Perry, M. D.

Roca, J. J.

O. E. Martínez, P. Thiagarajan, M. C. Marconi, and J. J. Roca, IEEE J. Quantum Electron. 25, 2124 (1989).
[Crossref]

Simon, J. M.

Strickland, D.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[Crossref]

Stuart, B. C.

Thiagarajan, P.

O. E. Martínez, P. Thiagarajan, M. C. Marconi, and J. J. Roca, IEEE J. Quantum Electron. 25, 2124 (1989).
[Crossref]

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

Valencia, C. I.

R. A. Depine and C. I. Valencia, Opt. Commun. 117, 223 (1995).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

O. E. Martínez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[Crossref]

O. E. Martínez, P. Thiagarajan, M. C. Marconi, and J. J. Roca, IEEE J. Quantum Electron. 25, 2124 (1989).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[Crossref]

R. A. Depine and C. I. Valencia, Opt. Commun. 117, 223 (1995).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Grating-pair compressor. γ and ψ are the azimuth and altitude incidence angles in polar coordinates, respectively, and θ and ψ are the azimuth and altitude diffracting angles, respectively. The phase delay computed at a frequency w that travels in the direction k is given by the optical path AB=Z cos θ, where Z=AB is the distance between grating planes.

Fig. 2
Fig. 2

(a) Contour plots of 1=-ϕ3w/3ϕ2 as a function of the incident angles γ and ψ. ϕ2 and ϕ3 are the second- and third-order dispersion of the plane grating-pair compressor, respectively, and w is the central frequency of the pulse. (b) Contour plots of 2=ϕ4w2/3ϕ2 as a function of the incident angles γ and ψ. ϕ4 is the fourth-order dispersion of the plane grating-pair compressor. The grating is used at the first order of diffraction, its groove density is 1200  grooves/nm, and the pulse has a central wavelength at 800  nm.

Fig. 3
Fig. 3

2 as a function of 1. We obtained the points by computing 1 and 2 as a function of γ and ψ (ranging from 0° to 90°) for a mesh with steps of 0.5° in γ and ψ. A lower density of points corresponds to greater sensitivity to γ and ψ.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

sin γ cos ψ-sin θ cos ψ=mλ/d=mwg/w,
sin γ sin ψ-sin θ sin ψ=0,
ϕ=wZ cos θ/c.
T=dϕdw=Zccos θ-w sin θ dθdw,
-cos ψ cos θ dθ+sin θ sin ψ=-wg/w2 dw,
dψdθ=-tan ψtan θ.
dθdw=wgw2cos ψcos θ.
ϕ2=-Zcwg2w3cos2 ψcos3 θ1+cos2 θ tan2 ψ,
ϕ3=-ϕ23w1-wgwcos ψ tan θcos θ,
ϕ4=ϕ23w21-wgwcos ψ tan θcos θ×4-3wgwcos ψ tan θcos θ-wgwcos ψ tan θcos θ+wg2w2cos2 ψcos4 θ×1+sin2 θ+cos2 θtan2 ψ.
1=-ϕ3w3ϕ2=1-wgwcos ψ tan θcos θ,
2=ϕ4w23ϕ2=312+21-1+wg2w2cos2 ψcos4 θ×1+sin2 θ+cos2 θ tan2 ψ.

Metrics