Abstract

The performance of collinear and noncollinear pulsed barium borate optical parametric oscillators with third-harmonic Nd:YAG pumping is analyzed. The effects of tangential phase matching and pump Poynting vector walk-off compensation are shown to enhance noncollinear operation. However, we show that these effects are mutually exclusive for a type  I β-barium borate optical parametric oscillator and furthermore that tangential phase matching is dominant. The selection of a collinear or a noncollinear configuration is determined by pump divergence and spot size as well as by crystal aperture. With a pump divergence of 4  mrad, noncollinear operation is optimal. The highest slope efficiency, 37%, and the lowest threshold, 5  mJ, are obtained with nearly perfect tangential phase matching. For a pump divergence of less than 2  mrad and a similar spot size, collinear operation gives the lowest threshold, 3.2  mJ, and the highest slope efficiency, 33%.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
    [CrossRef]
  2. D. E. Withers, G. Robertson, A. J. Henderson, Y. Tang, Y. Ciu, W. Sibbett, B. D. Sinclair, and M. H. Dunn, J. Opt. Soc. Am. B 10, 1737 (1993).
    [CrossRef]
  3. J. Falk and J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
    [CrossRef]
  4. E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
    [CrossRef]
  5. S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 8, 1732 (1991).
    [CrossRef]
  6. M. J. T. Milton, T. J. McIlveen, D. C. Hanna, and P. T. Woods, Opt. Commun. 87, 273 (1992).
    [CrossRef]
  7. L. A. W. Gloster, Z. X. Jiang, and T. A. King, IEEE J. Quantum Electron. 30, 2961 (1994).
    [CrossRef]
  8. G. C. Bhar, P. K. Datta, A. M. Rudra, and U. Chatterjee, Opt. Commun. 105, 95 (1994).
    [CrossRef]
  9. L. A. W. Gloster, I. T. McKinnie, and T. A. King, Opt. Commun. 112, 328 (1994).
    [CrossRef]
  10. S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
    [CrossRef]

1994 (3)

L. A. W. Gloster, Z. X. Jiang, and T. A. King, IEEE J. Quantum Electron. 30, 2961 (1994).
[CrossRef]

G. C. Bhar, P. K. Datta, A. M. Rudra, and U. Chatterjee, Opt. Commun. 105, 95 (1994).
[CrossRef]

L. A. W. Gloster, I. T. McKinnie, and T. A. King, Opt. Commun. 112, 328 (1994).
[CrossRef]

1993 (1)

1992 (1)

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, and P. T. Woods, Opt. Commun. 87, 273 (1992).
[CrossRef]

1991 (2)

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

S. X. Dou, D. Josse, and J. Zyss, J. Opt. Soc. Am. B 8, 1732 (1991).
[CrossRef]

1987 (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

1979 (1)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

1969 (1)

J. Falk and J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
[CrossRef]

Bhar, G. C.

G. C. Bhar, P. K. Datta, A. M. Rudra, and U. Chatterjee, Opt. Commun. 105, 95 (1994).
[CrossRef]

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

Byer, R. L.

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

Chatterjee, U.

G. C. Bhar, P. K. Datta, A. M. Rudra, and U. Chatterjee, Opt. Commun. 105, 95 (1994).
[CrossRef]

Ciu, Y.

Datta, P. K.

G. C. Bhar, P. K. Datta, A. M. Rudra, and U. Chatterjee, Opt. Commun. 105, 95 (1994).
[CrossRef]

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Dou, S. X.

Dunn, M. H.

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Falk, J.

J. Falk and J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
[CrossRef]

Gloster, L. A. W.

L. A. W. Gloster, Z. X. Jiang, and T. A. King, IEEE J. Quantum Electron. 30, 2961 (1994).
[CrossRef]

L. A. W. Gloster, I. T. McKinnie, and T. A. King, Opt. Commun. 112, 328 (1994).
[CrossRef]

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Hanna, D. C.

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, and P. T. Woods, Opt. Commun. 87, 273 (1992).
[CrossRef]

Henderson, A. J.

Jiang, Z. X.

L. A. W. Gloster, Z. X. Jiang, and T. A. King, IEEE J. Quantum Electron. 30, 2961 (1994).
[CrossRef]

Josse, D.

King, T. A.

L. A. W. Gloster, Z. X. Jiang, and T. A. King, IEEE J. Quantum Electron. 30, 2961 (1994).
[CrossRef]

L. A. W. Gloster, I. T. McKinnie, and T. A. King, Opt. Commun. 112, 328 (1994).
[CrossRef]

McIlveen, T. J.

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, and P. T. Woods, Opt. Commun. 87, 273 (1992).
[CrossRef]

McKinnie, I. T.

L. A. W. Gloster, I. T. McKinnie, and T. A. King, Opt. Commun. 112, 328 (1994).
[CrossRef]

Milton, M. J. T.

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, and P. T. Woods, Opt. Commun. 87, 273 (1992).
[CrossRef]

Murray, J. E.

J. Falk and J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
[CrossRef]

Pelouch, W. S.

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

Robertson, G.

Rudra, A. M.

G. C. Bhar, P. K. Datta, A. M. Rudra, and U. Chatterjee, Opt. Commun. 105, 95 (1994).
[CrossRef]

Sibbett, W.

Sinclair, B. D.

Tang, C. L.

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

Tang, Y.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Wachman, E. S.

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

Withers, D. E.

Woods, P. T.

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, and P. T. Woods, Opt. Commun. 87, 273 (1992).
[CrossRef]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Zyss, J.

Appl. Phys. Lett. (1)

J. Falk and J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. A. W. Gloster, Z. X. Jiang, and T. A. King, IEEE J. Quantum Electron. 30, 2961 (1994).
[CrossRef]

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

J. Appl. Phys. (2)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

E. S. Wachman, W. S. Pelouch, and C. L. Tang, J. Appl. Phys. 70, 1893 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

M. J. T. Milton, T. J. McIlveen, D. C. Hanna, and P. T. Woods, Opt. Commun. 87, 273 (1992).
[CrossRef]

G. C. Bhar, P. K. Datta, A. M. Rudra, and U. Chatterjee, Opt. Commun. 105, 95 (1994).
[CrossRef]

L. A. W. Gloster, I. T. McKinnie, and T. A. King, Opt. Commun. 112, 328 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) PVWC geometry. The signal wave vector ks is parallel to the pump Poynting vector Sp. (b) TPM geometry. The nonresonant idler wave vector ki is able to compensate for a diverging pump beam, increasing the crystal acceptance angle.

Fig. 2
Fig. 2

OPO output energy as a function of pump energy for (a) 2-mm and (b) 5-mm pump beam apertures. Results are shown for various noncollinear angles.

Fig. 3
Fig. 3

OPO output energy as a function of pump energy for the pump beam with (a) a Galilean telescope and (b) a single lens.

Metrics