Abstract

We have measured the vibrational Raman spectrum of a 1.2-μm-thick polystyrene film by using this film as an optical waveguide in a waveguide-stimulated Raman gain experiment. A gain factor of 1.3% was measured for the strong benzene mode at 1002 cm−1. This value is in reasonable agreement with theoretical predictions.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Rabolt, J. D. Swalen, in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, Chichester, UK, 1988), pp. 1–36.
  2. J. F. Rabolt, R. Santo, J. D. Swalen, Appl. Spectrosc. 34, 517 (1980).
    [CrossRef]
  3. J. S. Kanger, C. Otto, M. Slotboom, J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,”J. Phys. Chem. (to be published).
  4. G. I. Stegeman, R. Fortenberry, C. Karaguleff, R. Moshrefzadeh, W. M. Hetherington, N. E. Van Wyck, J. E. Sipe, Opt. Lett. 8, 295 (1983).
    [CrossRef] [PubMed]
  5. W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
    [CrossRef]
  6. W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, J. Greve, Appl. Spectrosc. 47, 723 (1993).
    [CrossRef]
  7. J. S. Kanger, C. Otto, J. Geve, Opt. Lett. 20, 2231 (1995). In that Letter a minor numerical error was introduced. All the given gain factors should be multiplied by a factor of 5.
    [CrossRef] [PubMed]
  8. B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
    [CrossRef]
  9. B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979).
    [CrossRef]

1995

1993

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, J. Greve, Appl. Spectrosc. 47, 723 (1993).
[CrossRef]

1983

1980

J. F. Rabolt, R. Santo, J. D. Swalen, Appl. Spectrosc. 34, 517 (1980).
[CrossRef]

B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
[CrossRef]

1979

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979).
[CrossRef]

Bethea, C. G.

B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
[CrossRef]

de Boeij, W. P.

Fortenberry, R.

Geve, J.

Greve, J.

W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, J. Greve, Appl. Spectrosc. 47, 723 (1993).
[CrossRef]

J. S. Kanger, C. Otto, M. Slotboom, J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,”J. Phys. Chem. (to be published).

Heritage, J. P.

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979).
[CrossRef]

Hetherington, W. M.

Kanger, J. S.

J. S. Kanger, C. Otto, J. Geve, Opt. Lett. 20, 2231 (1995). In that Letter a minor numerical error was introduced. All the given gain factors should be multiplied by a factor of 5.
[CrossRef] [PubMed]

W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, J. Greve, Appl. Spectrosc. 47, 723 (1993).
[CrossRef]

J. S. Kanger, C. Otto, M. Slotboom, J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,”J. Phys. Chem. (to be published).

Karaguleff, C.

Koenig, E. W.

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

Levine, B. F.

B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
[CrossRef]

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979).
[CrossRef]

Lucassen, G. W.

Moshrefzadeh, R.

Otto, C.

J. S. Kanger, C. Otto, J. Geve, Opt. Lett. 20, 2231 (1995). In that Letter a minor numerical error was introduced. All the given gain factors should be multiplied by a factor of 5.
[CrossRef] [PubMed]

W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, J. Greve, Appl. Spectrosc. 47, 723 (1993).
[CrossRef]

J. S. Kanger, C. Otto, M. Slotboom, J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,”J. Phys. Chem. (to be published).

Rabolt, J. F.

J. F. Rabolt, R. Santo, J. D. Swalen, Appl. Spectrosc. 34, 517 (1980).
[CrossRef]

J. F. Rabolt, J. D. Swalen, in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, Chichester, UK, 1988), pp. 1–36.

Santo, R.

Shank, C. V.

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979).
[CrossRef]

Sipe, J. E.

Slotboom, M.

J. S. Kanger, C. Otto, M. Slotboom, J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,”J. Phys. Chem. (to be published).

Stegeman, G. I.

Swalen, J. D.

J. F. Rabolt, R. Santo, J. D. Swalen, Appl. Spectrosc. 34, 517 (1980).
[CrossRef]

J. F. Rabolt, J. D. Swalen, in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, Chichester, UK, 1988), pp. 1–36.

Van Wyck, N. E.

Wijekoon, W. M. K. P.

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

Appl. Spectrosc.

IEEE J. Quantum Electron

B. F. Levine, C. G. Bethea, IEEE J. Quantum Electron. QE-16, 85 (1980).
[CrossRef]

IEEE J. Quantum Electron.

B. F. Levine, C. V. Shank, J. P. Heritage, IEEE J. Quantum Electron. QE-15, 1418 (1979).
[CrossRef]

J. Phys. Chem.

W. M. K. P. Wijekoon, E. W. Koenig, W. M. Hetherington, J. Phys. Chem. 97, 1065 (1993).
[CrossRef]

Opt. Lett.

Other

J. F. Rabolt, J. D. Swalen, in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, Chichester, UK, 1988), pp. 1–36.

J. S. Kanger, C. Otto, M. Slotboom, J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,”J. Phys. Chem. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Waveguide assembly and experimental configuration as used in a waveguide-stimulated Raman gain experiment. The electric field distributions of the TE0 modes employed are shown for the 1.2-μm-thick polystyrene waveguide.

Fig. 2
Fig. 2

Schematic representation of the experimental setup: BS, beam splitter; NF1, NF2, holographic notch filters for pump light rejection; PD1, signal photodiode; PD2, reference photodiode.

Fig. 3
Fig. 3

Stimulated Raman gain spectrum of a 1.2-μm-thick polystyrene waveguide. The peak gain is 1.3 × 10−2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G = ( ω Stokes / 2 ) Re ( F k l ) P pump L / H .
G = 5.0 × 10 - 5 P pump L / H
G t / G ss = π / 2 σ exp ( σ 2 ) erfc ( σ ) ,             σ = 1 4 τ τ ν ,

Metrics