Abstract

Room-temperature green upconversion fluorescence of an Er3+-doped POCl3–SnCl4 solution is achieved when the solution is pumped with an 800-nm GaAs laser diode. The upconversion emission at 550 nm is determined to be the result of a two-step absorption process. Numerical analysis reveals that laser systems that employ this erbium-doped laser liquid should be realizable with threshold pump powers as low as 45 mW.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Miniscalco, in Rare Earth Doped Fiber Lasers and Amplifiers., M. Digonnet, ed. (Dekker, New York, 1993), pp. 19–133.
  2. R. J. Thrash, L. F. Johnson, J. Opt. Soc. Am. B 11, 881 (1994).
    [CrossRef]
  3. R. A. McFarlane, J. Opt. Soc. Am. B 11, 871 (1994).
    [CrossRef]
  4. S. G. Grubb, K. W. Bennett, R. S. Cannon, W. F. Humer, Electron. Lett. 28, 1243 (1992).
    [CrossRef]
  5. D. Piehler, D. Craven, N. Kwong, H. Zarem, Electron. Lett. 29, 1857 (1993).
    [CrossRef]
  6. A. Lempicki, in CRC Handbook of Lasers (CRC, Cleveland, Ohio, 1971), pp. 355–359.
  7. A. Heller, J. Am. Chem. Soc. 90, 3711 (1968).
    [CrossRef]
  8. C. Brecher, K. W. French, J. Phys. Chem. 73, 1785 (1969).
    [CrossRef]
  9. R. I. Laming, S. B. Poole, E. J. Tarbox, Opt. Lett. 13, 1084 (1988).
    [CrossRef] [PubMed]
  10. S. V. J. Lakshaman, L. Rama Moorthy, Appl. Phys. A 38, 285 (1985).
    [CrossRef]
  11. J. F. Massicott, M. C. Brierly, R. Wyatt, S. T. Davey, D. Szebesta, Electron. Lett. 29, 2119 (1993).
    [CrossRef]
  12. T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierly, D. Szebesta, Electron. Lett. 27, 1785 (1991).
    [CrossRef]
  13. K. Hirao, S. Todoroki, N. Soga, J. Non-Cryst. Solids 143, 40 (1992).
    [CrossRef]
  14. A. Heller, J. Mol. Spectrosc. 28, 208 (1968).
    [CrossRef]

1994

1993

D. Piehler, D. Craven, N. Kwong, H. Zarem, Electron. Lett. 29, 1857 (1993).
[CrossRef]

J. F. Massicott, M. C. Brierly, R. Wyatt, S. T. Davey, D. Szebesta, Electron. Lett. 29, 2119 (1993).
[CrossRef]

1992

K. Hirao, S. Todoroki, N. Soga, J. Non-Cryst. Solids 143, 40 (1992).
[CrossRef]

S. G. Grubb, K. W. Bennett, R. S. Cannon, W. F. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

1991

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierly, D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

1988

1985

S. V. J. Lakshaman, L. Rama Moorthy, Appl. Phys. A 38, 285 (1985).
[CrossRef]

1969

C. Brecher, K. W. French, J. Phys. Chem. 73, 1785 (1969).
[CrossRef]

1968

A. Heller, J. Am. Chem. Soc. 90, 3711 (1968).
[CrossRef]

A. Heller, J. Mol. Spectrosc. 28, 208 (1968).
[CrossRef]

Bennett, K. W.

S. G. Grubb, K. W. Bennett, R. S. Cannon, W. F. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

Brecher, C.

C. Brecher, K. W. French, J. Phys. Chem. 73, 1785 (1969).
[CrossRef]

Brierly, M. C.

J. F. Massicott, M. C. Brierly, R. Wyatt, S. T. Davey, D. Szebesta, Electron. Lett. 29, 2119 (1993).
[CrossRef]

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierly, D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Cannon, R. S.

S. G. Grubb, K. W. Bennett, R. S. Cannon, W. F. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

Craven, D.

D. Piehler, D. Craven, N. Kwong, H. Zarem, Electron. Lett. 29, 1857 (1993).
[CrossRef]

Davey, S. T.

J. F. Massicott, M. C. Brierly, R. Wyatt, S. T. Davey, D. Szebesta, Electron. Lett. 29, 2119 (1993).
[CrossRef]

French, K. W.

C. Brecher, K. W. French, J. Phys. Chem. 73, 1785 (1969).
[CrossRef]

Grubb, S. G.

S. G. Grubb, K. W. Bennett, R. S. Cannon, W. F. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

Heller, A.

A. Heller, J. Mol. Spectrosc. 28, 208 (1968).
[CrossRef]

A. Heller, J. Am. Chem. Soc. 90, 3711 (1968).
[CrossRef]

Hirao, K.

K. Hirao, S. Todoroki, N. Soga, J. Non-Cryst. Solids 143, 40 (1992).
[CrossRef]

Humer, W. F.

S. G. Grubb, K. W. Bennett, R. S. Cannon, W. F. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

Johnson, L. F.

Kwong, N.

D. Piehler, D. Craven, N. Kwong, H. Zarem, Electron. Lett. 29, 1857 (1993).
[CrossRef]

Lakshaman, S. V. J.

S. V. J. Lakshaman, L. Rama Moorthy, Appl. Phys. A 38, 285 (1985).
[CrossRef]

Laming, R. I.

Lempicki, A.

A. Lempicki, in CRC Handbook of Lasers (CRC, Cleveland, Ohio, 1971), pp. 355–359.

Massicott, J. F.

J. F. Massicott, M. C. Brierly, R. Wyatt, S. T. Davey, D. Szebesta, Electron. Lett. 29, 2119 (1993).
[CrossRef]

McFarlane, R. A.

Millar, C. A.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierly, D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco, in Rare Earth Doped Fiber Lasers and Amplifiers., M. Digonnet, ed. (Dekker, New York, 1993), pp. 19–133.

Piehler, D.

D. Piehler, D. Craven, N. Kwong, H. Zarem, Electron. Lett. 29, 1857 (1993).
[CrossRef]

Poole, S. B.

Rama Moorthy, L.

S. V. J. Lakshaman, L. Rama Moorthy, Appl. Phys. A 38, 285 (1985).
[CrossRef]

Soga, N.

K. Hirao, S. Todoroki, N. Soga, J. Non-Cryst. Solids 143, 40 (1992).
[CrossRef]

Szebesta, D.

J. F. Massicott, M. C. Brierly, R. Wyatt, S. T. Davey, D. Szebesta, Electron. Lett. 29, 2119 (1993).
[CrossRef]

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierly, D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Tarbox, E. J.

Thrash, R. J.

Todoroki, S.

K. Hirao, S. Todoroki, N. Soga, J. Non-Cryst. Solids 143, 40 (1992).
[CrossRef]

Whitley, T. J.

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierly, D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Wyatt, R.

J. F. Massicott, M. C. Brierly, R. Wyatt, S. T. Davey, D. Szebesta, Electron. Lett. 29, 2119 (1993).
[CrossRef]

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierly, D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

Zarem, H.

D. Piehler, D. Craven, N. Kwong, H. Zarem, Electron. Lett. 29, 1857 (1993).
[CrossRef]

Appl. Phys. A

S. V. J. Lakshaman, L. Rama Moorthy, Appl. Phys. A 38, 285 (1985).
[CrossRef]

Electron. Lett.

J. F. Massicott, M. C. Brierly, R. Wyatt, S. T. Davey, D. Szebesta, Electron. Lett. 29, 2119 (1993).
[CrossRef]

T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierly, D. Szebesta, Electron. Lett. 27, 1785 (1991).
[CrossRef]

S. G. Grubb, K. W. Bennett, R. S. Cannon, W. F. Humer, Electron. Lett. 28, 1243 (1992).
[CrossRef]

D. Piehler, D. Craven, N. Kwong, H. Zarem, Electron. Lett. 29, 1857 (1993).
[CrossRef]

J. Am. Chem. Soc.

A. Heller, J. Am. Chem. Soc. 90, 3711 (1968).
[CrossRef]

J. Mol. Spectrosc.

A. Heller, J. Mol. Spectrosc. 28, 208 (1968).
[CrossRef]

J. Non-Cryst. Solids

K. Hirao, S. Todoroki, N. Soga, J. Non-Cryst. Solids 143, 40 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

C. Brecher, K. W. French, J. Phys. Chem. 73, 1785 (1969).
[CrossRef]

Opt. Lett.

Other

W. J. Miniscalco, in Rare Earth Doped Fiber Lasers and Amplifiers., M. Digonnet, ed. (Dekker, New York, 1993), pp. 19–133.

A. Lempicki, in CRC Handbook of Lasers (CRC, Cleveland, Ohio, 1971), pp. 355–359.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectrum of Er3+-doped POCl3–SnCl4 solutions.

Fig. 2
Fig. 2

Energy-level diagram of Er3+. Important transitions in the upconversion process are shown. The upconversion is achieved through two-step absorption.

Fig. 3
Fig. 3

Upconversion fluorescence intensity (I) at 550 nm as a function of 800-nm input pump power (P). The intensity scales roughly as the square of the pump power, indicating a two-step absorption process. The solid line is a least-squares fit to the data.

Fig. 4
Fig. 4

Upconversion fluorescence spectrum of an Er3+- doped POCl3–SnCl4 solution. The peak fluorescence is at 550 nm.

Tables (1)

Tables Icon

Table 1 Optical Cross Section and Lifetime Values for Er3+-Doped POCl3–SnCl4

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d s ( z ) d z = N [ - σ a + σ e β β p ( z ) p ( z ) 1 + β p ( z ) + β β p ( z ) p ( z ) ] s ( z ) ,
d p ( z ) d z = N [ - σ p - σ p β p ( z ) 1 + β p ( z ) + β β p ( z ) p ( z ) ] p ( z ) ,
β = σ p τ 2 P h ν p A ,             β = σ p τ 3 P h ν p A ,

Metrics