Abstract

A new configuration for a pressure sensor in which the motion of a diaphragm produces strain in a fiber Fabry – Perot interferometer (FFPI) is described. The single–mode fiber containing the interferometer is bonded at one end to the stainless-steel diaphragm. The fiber is also attached beyond the interferometer to the sensor housing in such a manner that it is always under tension and experiences a strain in proportion to the deflection of the diaphragm. An analysis relating the expected interferometer phase change to pressure is presented, and the dynamic response of the FFPI sensor to pressure changes produced by an air pump is in good agreement with that measured with a conventional pressure sensor.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Lee, H. F. Taylor, “Sensors for smart structure based upon the Fabry–Perot interferometer,” in Fiber Optics Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 249–269.
  2. R. A. Atkins, J. H. Gardner, W. N. Gibler, C. E. Lee, M. D. Oakland, M. O. Spears, V. P. Swenson, H. F. Taylor, J. J. McCoy, G. Beshouri, Appl. Opt. 33, 1315 (1995).
    [CrossRef]
  3. R. Sadkowski, C. E. Lee, H. F. Taylor, Appl. Opt. 34, 5861 (1995).
    [CrossRef] [PubMed]
  4. G. L. Mitchell, “Intensity-based and Fabry–Perot interferometer sensors,” in Fiber Optics Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley Interscience, New York, 1991), p. 139.
  5. Y. J. Rao, D. A. Jackson, R. Jones, C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
    [CrossRef]
  6. S. P. Timoshenko, S. W. Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1987).

1995

1994

Y. J. Rao, D. A. Jackson, R. Jones, C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Atkins, R. A.

Beshouri, G.

Gardner, J. H.

Gibler, W. N.

Jackson, D. A.

Y. J. Rao, D. A. Jackson, R. Jones, C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Jones, R.

Y. J. Rao, D. A. Jackson, R. Jones, C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Krieger, S. W.

S. P. Timoshenko, S. W. Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1987).

Lee, C. E.

R. Sadkowski, C. E. Lee, H. F. Taylor, Appl. Opt. 34, 5861 (1995).
[CrossRef] [PubMed]

R. A. Atkins, J. H. Gardner, W. N. Gibler, C. E. Lee, M. D. Oakland, M. O. Spears, V. P. Swenson, H. F. Taylor, J. J. McCoy, G. Beshouri, Appl. Opt. 33, 1315 (1995).
[CrossRef]

C. E. Lee, H. F. Taylor, “Sensors for smart structure based upon the Fabry–Perot interferometer,” in Fiber Optics Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 249–269.

McCoy, J. J.

Mitchell, G. L.

G. L. Mitchell, “Intensity-based and Fabry–Perot interferometer sensors,” in Fiber Optics Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley Interscience, New York, 1991), p. 139.

Oakland, M. D.

Rao, Y. J.

Y. J. Rao, D. A. Jackson, R. Jones, C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Sadkowski, R.

Shannon, C.

Y. J. Rao, D. A. Jackson, R. Jones, C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Spears, M. O.

Swenson, V. P.

Taylor, H. F.

R. A. Atkins, J. H. Gardner, W. N. Gibler, C. E. Lee, M. D. Oakland, M. O. Spears, V. P. Swenson, H. F. Taylor, J. J. McCoy, G. Beshouri, Appl. Opt. 33, 1315 (1995).
[CrossRef]

R. Sadkowski, C. E. Lee, H. F. Taylor, Appl. Opt. 34, 5861 (1995).
[CrossRef] [PubMed]

C. E. Lee, H. F. Taylor, “Sensors for smart structure based upon the Fabry–Perot interferometer,” in Fiber Optics Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 249–269.

Timoshenko, S. P.

S. P. Timoshenko, S. W. Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1987).

Appl. Opt.

J. Lightwave Technol.

Y. J. Rao, D. A. Jackson, R. Jones, C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Other

S. P. Timoshenko, S. W. Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1987).

C. E. Lee, H. F. Taylor, “Sensors for smart structure based upon the Fabry–Perot interferometer,” in Fiber Optics Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 249–269.

G. L. Mitchell, “Intensity-based and Fabry–Perot interferometer sensors,” in Fiber Optics Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley Interscience, New York, 1991), p. 139.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of the FFPI pressure sensor.

Fig. 2
Fig. 2

Experimental arrangement.

Fig. 3
Fig. 3

Dynamic response of the FFPI sensor compared with that of the Motorola pressure sensor.

Fig. 4
Fig. 4

Signal amplitude from the FFPI pressure sensor versus that from the Motorola pressure sensor.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δ Φ = 0.78 × 4 π ν n ( δ L FP ) c ,
y ( r ) = ( Δ / a 4 ) ( a 2 - r 2 ) 2 ,
W = - P 0 a y ( r ) 2 π r d r ,
W pressure = - π Δ P a 2 3 .
W diaphragm = ½ E d ( ɛ l 2 + ɛ t 2 ) d V ,
W diaphragm = 8 π E d t 3 Δ 2 9 a 2 .
W fiber = ½ E f V ɛ 2 d V ,
W fiber = ½ E f ( Δ f / L f ) 2 ( A f L f ) ,
W = - π Δ P a 2 3 + 8 π E d t 3 Δ 2 9 a 2 + E f A f Δ f 2 2 L f .
Δ = π P a 2 3 - E f A f Δ f 0 L f ( 16 9 π t 3 E d a 2 + E f A f L f ) ,
d Δ d P = 3 π a 4 L f 16 π t 3 E d L f + 9 a 2 E f A f .

Metrics