Abstract

A novel cross-phase modulation scheme that permits measurement of the optical Kerr coefficient in non-polarization- preserving fiber is presented. The scheme is based on a Michelson-type interferometer in which one mirror is replaced by an orthoconjugated mirror. The use of this device leads to an effective insensitivity with respect to the state of polarization of the probe and pump beams.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
    [CrossRef]
  2. A. Wada, T. O. Tsun, R. Yamauchi, presented at the 18th European Conference on Optical Communication, Berlin, September 27–October 1, 1992.
  3. K. S. Kim, R. H. Stolen, W. A. Reed, K. W. Quoi, Opt. Lett. 19, 257 (1994).
    [CrossRef] [PubMed]
  4. M. Martinelli, Opt. Commun. 72, 341 (1989).
    [CrossRef]
  5. M. Martinelli, J. Mod. Opt. 39, 451 (1992).
    [CrossRef]
  6. P. Boffi, A. Fellegara, M. Martinelli, “Analysis of the Kerr phase-shift induced by optically amplified transmission signals,” Opt. Commun (to be published).

1994

1992

M. Martinelli, J. Mod. Opt. 39, 451 (1992).
[CrossRef]

1989

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

1978

R. H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Boffi, P.

P. Boffi, A. Fellegara, M. Martinelli, “Analysis of the Kerr phase-shift induced by optically amplified transmission signals,” Opt. Commun (to be published).

Fellegara, A.

P. Boffi, A. Fellegara, M. Martinelli, “Analysis of the Kerr phase-shift induced by optically amplified transmission signals,” Opt. Commun (to be published).

Kim, K. S.

Lin, C.

R. H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Martinelli, M.

M. Martinelli, J. Mod. Opt. 39, 451 (1992).
[CrossRef]

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

P. Boffi, A. Fellegara, M. Martinelli, “Analysis of the Kerr phase-shift induced by optically amplified transmission signals,” Opt. Commun (to be published).

Quoi, K. W.

Reed, W. A.

Stolen, R. H.

Tsun, T. O.

A. Wada, T. O. Tsun, R. Yamauchi, presented at the 18th European Conference on Optical Communication, Berlin, September 27–October 1, 1992.

Wada, A.

A. Wada, T. O. Tsun, R. Yamauchi, presented at the 18th European Conference on Optical Communication, Berlin, September 27–October 1, 1992.

Yamauchi, R.

A. Wada, T. O. Tsun, R. Yamauchi, presented at the 18th European Conference on Optical Communication, Berlin, September 27–October 1, 1992.

J. Mod. Opt.

M. Martinelli, J. Mod. Opt. 39, 451 (1992).
[CrossRef]

Opt. Commun.

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

Opt. Lett.

Phys. Rev. A

R. H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Other

A. Wada, T. O. Tsun, R. Yamauchi, presented at the 18th European Conference on Optical Communication, Berlin, September 27–October 1, 1992.

P. Boffi, A. Fellegara, M. Martinelli, “Analysis of the Kerr phase-shift induced by optically amplified transmission signals,” Opt. Commun (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental set-up. The probe beam is reflected by a NM or by an OCM and retraces the test coil. PC’s, polarization controllers; RX, receiver.

Fig. 2
Fig. 2

Representation on the Poincaré sphere of field SOP’s for the copropagating and the counterpropagating modalities. α and β are the angles between |Pump〉 and |Probe, co〉, |Pump〉 and |Probe, ct〉, respectively.

Fig. 3
Fig. 3

The measured phase signal is the sum of copropagating and counterpropagating signals. In trace A the counterpropagating contribution (triangular wave) is maximum, whereas in trace B the copropagating contribution (square wave) is maximum.

Fig. 4
Fig. 4

Dispersion of 10 measurements with random pump input SOP’s carried out with a NM and an OCM.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ co ( t ) = 2 2 π λ n 2 A eff b co P pump ( t ) L eff ,
Δ Φ ct ( t ) = 2 2 π λ n 2 A eff [ b ct 0 L P pump ( t - 2 l v ) e ( - α l ) d l ] ,
Δ Φ max = Δ Φ ct + Δ Φ co = 2 2 π λ n 2 A eff P pump , peak l eff ( b ct + b co ) ,
Pump Probe , co = cos 2 ( α / 2 ) ,
Opposite Pump Probe , co = cos 2 [ ( π - α ) / 2 ] = sin 2 ( α / 2 ) .
b co = 1 cos 2 ( α / 2 ) + 1 / 3 sin 2 ( α / 2 ) .
b ct = 1 cos 2 ( β / 2 ) + 1 / 3 sin 2 ( β / 2 ) .
( b ct + b co ) = 4 / 3.

Metrics