Abstract

We examine the stationary propagation of a black solitary wave in a fiber laser or in a fiber transmission system with periodically distributed amplifiers and saturable absorbers that is governed by the Ginzburg–Landau equation. An analytical solution of the chirped black solitary wave to the Ginzburg–Landau equation that includes the nonlinear saturation effect is obtained for what we believe to be the first time. The stability analyses reveal that the stationary propagation of the chirped black solitary wave can be stable when the saturation effect of nonlinear gain or loss is taken into account, whereas the chirped black solitary-wave solution of the Ginzburg–Landau equation that does not include the nonlinear saturation of gain or loss is found to be unstable. The criterion for the stable or unstable propagation of the chirped black solitary wave in the presence of the nonlinear gain or loss saturation is presented. Also, it is shown that two identical chirped black solitary waves launched in parallel will attract each other and may develop into a bound state of two parallel chirped black solitary waves. This is in contrast to the behavior of conventional black solitons of an unperturbed system, in which the two black solitons launched in parallel repel each other and distance themselves during propagation.

© 1996 Optical Society of America

Full Article  |  PDF Article

Corrections

Yijiang Chen, "Stable chirped black solitary waves in dispersive media with intensity-dependent gain and loss: erratum," Opt. Lett. 21, 1009-1009 (1996)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-21-13-1009

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription